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Abstract

We propose an unsupervised method to establish dense

semantic correspondences between images depicting differ-

ent instances of the same object category. We posit that

alignment is compositional in nature and requires the de-

tection of a similar visual concept between images. We re-

alize this in a top-down fashion using objectness, saliency,

and visual similarity cues to co-localize the regions of holis-

tic foreground objects. Jointly maximizing visual similarity

and bounding the geometric distortion induced by their con-

figuration, the target foreground object is then composed

by the subregions of the source foreground object. The re-

sultant composition is used to form a dense motion field

enabling the alignment. Experimental results on several

benchmark datasets support the efficacy of the proposed

method.

1. Introduction

Image alignment is one of the fundamental problems in

computer vision, finding many applications such as optical

flow [8], stereo matching [24], scene parsing [18], video

depth estimation [10], image enhancement [5], etc.

The difficulty in aligning images from the same 3D

scene, as encountered in optical flow estimation or in

wide-baseline stereo matching, lies in photometric changes

and/or changes in the image acquisition process such as

view geometry. The dense motion field is expected to en-

code these external factors and/or the displacement of ob-

jects in the scene. In the task of semantic alignment, how-

ever, the goal is to establish anatomical and/or functional

correspondences between the images. The dense motion

field is expected to encode not only the factors mentioned

above, but also the intra-class variations between the in-

stances of objects being imaged. The task becomes further

challenging when object instances are viewed in disparate

scenes forming background clutter.

Many of the earlier proposed works cast the semantic

alignment problem as a smooth registration of densely and

locally extracted features used to represent regions of a pre-

defined spatial support. This type of an approach neglects

to discover the extent of the existent semantic overlap be-

tween the pair of images. As a result, the alignment process

is mistakenly dominated by the futile effort of matching out-

lier features arising from background clutter.

In this paper, we propose an unsupervised method to

align image pairs which are semantically related. To this

end, we advocate a top-down compositional process. The

alignment is only meaningful between instances of objects

and/or between scenes of similar appearance. This requires

detecting akin visual concept demonstrated in the pair of

images. We co-localize such regions using objectness,

saliency and appearance similarity measures. The align-

ment is then guided by a region matching process targeted

to compose one of the images from the other by discover-

ing similar looking subregions under a low distortion piece-

wise affine geometric transformation model, see Fig. 1.

In summary, our key contributions are: (1) the use of co-

localization to discover foreground regions of similar ap-

pearance by simultaneous consideration of image pairs, and

(2) the introduction of a low geometric distortion inducing

composition of regions in aligning the semantically related

visual concept. Experiments show promising results sup-

porting the effectiveness of our compositional process.

The rest of the paper is organized as follows. In Section

2, we review the relevant work on semantic image align-

ment. In Section 3, we introduce the algorithmic details

of the proposed method. Section 4 presents the benchmark

datasets and experimental results and Section 5 concludes

the paper.

2. Related work

The prior work on semantic image alignment could be

broadly categorized into unsupervised and supervised meth-

ods. We provide a brief, non-exhaustive overview of some

of the techniques proposed so far.

Unsupervised methods. SIFT Flow [19] is one of the

earliest papers to attempt registering images of different but

similar looking scenes. SIFT features [21] at a predefined

scale and orientation are densely extracted and matched hi-

erarchically using loopy belief propagation. The method

successfully aligns pairs of images which are already fairly
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Figure 1: Alignment by composition. We align a pair of semantically related input images by means of a top-down compositional process.

Holistic foreground objects are first co-localized and a set of object part proposals from Image1 is extracted. Each object part proposal seeks

a region match support in Image2 in a coarse sliding window search fashion. Piece-wise affine transformations with bounded conformal

distortion are used to model the geometric variation between the images. Simultaneously maximizing the region matching scores and

bounding the distortions of the piece-wise affine transformations, a dense motion field is estimated to compose the foreground object in

Image1 with regions from Image2.

aligned and which have similar view geometry. Deformable

Spatial Pyramid (DSP) [11] provides modest improvement

upon SIFT Flow by considering a pyramid graph consisting

of cells whose spatial support covers a set of pixels pro-

viding context. These methods are highly challenged when

objects and/or scenes are viewed under different scales

and orientations. Scale-Space SIFT Flow [22] extends the

search space by extracting a set of SIFT descriptors with

different scales. The Generalized Deformable Spatial Pyra-

mid [9] considers a set of different orientations as well. The

Subpixel Semantic Flow [25] uses Geometric Blur [2] de-

scriptors and continuous domain variational formulation to

obtain subpixel resolution flow fields.

The Generalized PatchMatch [1] algorithm and the

Daisy Filter Flow [31] are proposed to obtain fast dense

correspondences. The former sacrifices geometric consis-

tency and aims to improve a random correspondence field

by propagation and random search, while the latter uses

filter-based inference to obtain geometrically more coher-

ent matches.

Proposal Flow (PF) [6] extracts object proposals and

uses region matching to align images. Taniai et al. [26], re-

lated to our work, aims to jointly cosegment the foreground

regions and establish a dense correspondence between them

by a hierarchical Markov random field model. Our method

does not rely on obtaining accurate segmentations and we

use higher order potentials to constrain the distortion of

the geometric transformation model relating the pair of im-

ages. Yang et al. [30] uses DSP-like graph representation

of the estimated foreground region which is obtained using

saliency cues. Unlike SIFT descriptors used in DSP, the

grid cells of the graph are represented by HOG features [7],

and the method trains an online discriminative classifier for

each cell. Contrary to their approach, our foreground object

co-localization utilizes information from both of the images

as salient regions in one of the images might not arise from

the similar visual concept pictured in the pair.

Supervised methods. Convolutional neural networks

(CNNs) have also been used to train feature embeddings

that can be robustly matched or to estimate the parameters

of a geometric transformation model in order to semanti-

cally align a pair of images. The biggest difficulty faced in

training a neural network is the lack of an abundant set of

supervisory annotation.

Zhou et al. [33] uses 3D CAD models as auxiliary dense

pixel-wise annotations to train a network that outputs a flow

field. Geometric CNN [23] estimates the parameters of an

affine transformation as well as a thin-plate spline (TPS) in-

terpolant to align images in two steps. The affine transfor-

mation, first, globally aligns the images and the TPS inter-

polant accounts for the residual local deformations. Fully

convolutional self similarity (FCSS) [12] network trains a

descriptor based on local self-similarity and uses SIFT Flow

and PF based optimization. Discrete continuous trnasfor-

mation matching (DCTM) [13] uses the FCSS descriptor,

however, formulates an iterative discrete-continuous opti-

mization. Ufer et al. [28] uses AlexNet [14] based deep fea-

tures to generate a set of candidate point correspondences

and uses a matching objective consisting of unary and pair-

wise match potentials.

3. Approach

Given two images I1 and I2, our goal is to find a flow

vector w(p) = (u(p), v(p)) at each point p = (x, y) in

I1 to comprise a dense motion field enabling semantic reg-

istration. Fig. 1 shows the pipeline of our algorithm. We

detail each component of our framework in the following

subsections.
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3.1. Object co-localization

Though the pair of input images are semantically related,

the different instances of the same category objects that are

meaningful to align need to be identified, as the objects

could be viewed in disparate backgrounds. We first use the

Selective Search (SS) [29] algorithm to generate proposals

consisting of holistic objects and object parts. Let R1 and

R2 denote the sets of extracted region proposals from I1
and I2 respectively. We propose the following optimization

function to co-localize the foreground objects:

{r1, r2} = argmax
r1∈R1,r2∈R2

O (r1, r2)+S (r1, r2)+A (r1, r2) .

(1)

The definitions and the justifications of each term are as fol-

lows:

Objectness term O (r1, r2). The object category similarity

of a region pair, (r1, r2), could be quantified with an object

detection framework. We run the Region based Fully Con-

volutional Network (R-FCN) [4] on the input images to ob-

tain a set of regions of detected objects and their labels, i.e.,

{Di, Li} i = 1, 2. Using the detected object regions and

their category labels, we then assign each proposal a cate-

gory score which is the maximum Intersection-over-Union

(IoU) score achieved with one of the detected objects, and

a category label which is of that detected object, i.e.,

score (r) = IoU (r, d) r ∈ Ri, d ∈ Di, i = 1, 2. (2)

�r = �d∗ where d∗ = argmax
d∈Di

IoU (r, d) r ∈ Ri, i = 1, 2.

(3)

Based on the scores and the labels of the proposals, the ob-

jectness term is defined as follows:

O (r1, r2) =
1

2
· �(�r1=�r2)

· [score (r1) + score (r2)] (4)

which helps eliminate selecting regions bounding objects

from different categories.

Saliency term S (r1, r2). As being the subject of the im-

age, foreground objects tend to be more salient than their

surrounding background. We use deep learning based fea-

tures [16] to compute saliency maps. Let SMi : Ii →
[0, 1], i = 1, 2 denote a real-valued saliency map computed

on an input image. Every proposal is assigned a saliency

value which is the average saliency computed on a pro-

posal’s spatial support. To help eliminate selecting probably

background regions, a proposal pair having high saliency is

favored to be picked:

S (r1, r2) =
1
2 ·

[ ∑
p∈r1

SM1(p)

area(r1)
+

∑
p∈r2

SM2(p)

area(r2)

]
. (5)

Appearance similarity term A (r1, r2). While objectness

and saliency terms are useful in filtering the regions arising

from background clutter, the use of appearance similarity

term is twofold: to assess the visual similarity of proposals

and to select regions bounding holistic objects rather than

object parts. We use a slight variant of the standout score

proposed in [3] to compute the appearance similarity of a

region pair (r1, r2):

A (r1, r2) = F (r1, r2)− max
r1b∈B(r1)

F

(
r1b, argmax

q2∈R2

F (r1b, q2)

)

B (r1) = {r1b | r1 � r1b, r1b ∈ R1} (6)

where F (·) measures the similarity of the features extracted

from the regions andB(·) returns regions which enclose the

region input as its argument. In an unsupervised setting, for

the task of semantic correspondence, it has been shown that

deep features extracted from mid-layers of CNNs trained

for object detection achieved similar performance as hand-

crafted low level features [20]. Throughout our work, we

use the whitened HOG features [7] to extract local visual

information. We use the same inclusive relation used in [3]

to construct the set B(r1): (1) the area of the region, r1,

is at most 50% of the areas of the regions surrounding it,

{r1b}, and (2) the surrounding regions contain at least 80%

of the area of the region considered.

Eq. 6 measures the appearance similarity contrast by

considering the difference between the appearance simi-

larity of the candidate regions and the maximal similarity

achieved by the regions containing them. As stated in [3],

the standout score is high when the regions considered con-

tain holistic objects of the same category, and is relatively

low when the regions instead contain object parts. This

is due to the fact that the appearance similarity contrast is

maximized when the candidate region is the tight holistic

object bounding box separating the foreground object from

the background for which the appearance similarity is ex-

pected to be low.

3.2. Object part matching

The holistic object and the object part proposals gener-

ated by the SS may not be perfectly repeatable across differ-

ent images. In other words, an object part such as the wheel

of a car might exist in the pool of proposals in one image

and might not be included in the other. To overcome the

inherent imperfection in the region generation process, af-

ter the foreground regions are co-localized, we use a coarse

sliding window search for every region contained in the

foreground in I1 satisfying the above-mentioned inclusive

relation, i.e., ∀r � r1, r ∈ R1 to generate matching candi-

dates for the object parts. The notion of parts we use in this

context do not need to be semantic or functional as certain

portions of objects could be matched seamlessly with the

embedded feature considered.

The foreground objects could be viewed under differ-

ent scales. To be able to robustly match its parts with
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varying scales in a sliding window fashion, we make

use of the relative scale information captured by the co-

localized foreground bounding boxes r1 and r2. Let

{TLx, TLy, BRx, BRy} denote the top-left and bottom-

right coordinates of a bounding box. We use the following

simple transformation, τ{sx,sy,tx,ty}, involving only scale

and translation, to relate the coordinates of r1 and r2 and

hence any region from R1 to R2, see Fig. 2:[
TLx|r2
TLy|r2

]
=

[
sx 0
0 sy

]
·

[
TLx|r1
TLy|r1

]
+

[
tx
ty

]
[
BRx|r2
BLy|r2

]
=

[
sx 0
0 sy

]
·

[
BRx|r1
BRy|r1

]
+

[
tx
ty

]
(7)

where {sx, sy, tx, ty} represent the relative scale and trans-

lation in x and y coordinates respectively. Using sx and

sy , we transform the scales of the regions contained in r1
and do coarse sliding window search within r2 in I2 with a

stride of 8 pixels to obtain object part matching responses.

Figure 2: The similarity transformation. The bounding boxes of

the foreground objects could be used to define a similarity trans-

formation, i.e., τ{sx,sy ,tx,ty} shown by the solid green curve. The

same transformation could be used to infer scales and positions of

object parts, one of which is shown by the dashed green curve.

3.3. Object composition

Object part matching responses computed using the

coarse sliding window search provide candidate region

matches between the input images. Such a process which

only uses visual similarity cues lacks geometric consis-

tency. The rear wheel of a car, in isolation, can be visually

very similar to the front wheel and hence can attain a high

region matching score. Such a match is invalidated only

when a simultaneous organization of parts is considered. In

order to establish dense correspondences between the input

images, we aim to compose the foreground region r1 from

the regions contained in r2 organized as a graph capturing

the interactions between object parts. To this end, we first

list the desired properties of an ideal compositional process.

The regions that compose r1 should: (1) have high ob-

ject part matching scores indicating successful and distinc-

tive visual alignment, (2) cover the domain of r1 as much as

possible, and (3) have a configuration resulting in a low ge-

ometric distortion as objects are naturally coherent in form

Figure 3: The Delaunay triangulation. We capture the geometry

of object parts using Delaunay triangulations. The vertices are the

center coordinates of object part regions and faces are triplets of

noncollinear vertices. Each face fj is only allowed to undergo an

affine transformation Aj with a bounded conformal distortion.

and can only undergo a certain extent of deformation. We

propose to optimize an energy functional which targets to

select a maximal subset of the object part matching can-

didates satisfying these properties. Before elaborating the

energy functional considered, we introduce some notation.

Let S1 = {ri} , i = 1, .., N represent a set of object part

regions contained in r1. For each region in r1, we keep the

K best matching object part regions found in r2 resulting

in the set S2 = { ˆri,k} , k = 1, ..,K. Let S1 = {rio} , o =
1, .., n ≤ N, io ∈ [1..N ] denote the maximal subset of ob-

ject part regions selected from r1 maximizing the energy

functional. Similarly, let S2 = { ˆrio,ko
} , ko ∈ [1..K] de-

note the maximal subset of matched object part regions in

r2.

We represent the organization of object parts using De-

launay triangulations. Let center (r) denote an operator

returning the center coordinate of a region r. The De-

launay triangulation of the centers of object part regions

in S1 is denoted with T (S1) = (V (S1) ,F (S1)) repre-

senting the resulting vertices and faces of the triangula-

tion. V (S1) = {center (rio)} is the set of points and

F (S1) = {fj} is the set of faces indexed by triplets of non-

collinear vertices. T (S2) is defined similarly. We consider

piecewise affine transformations to relate the matched point

sets {center (rio)} and {center ( ˆrio,ko
)} so that the vertices

of the face j undergoes the affine transformation Aj . The

conformal distortion of each Aj is measured using its lin-

ear part as defined in [17], i.e., D (Aj) =
σmax(Aj)
σmin(Aj)

where

σmax (Aj) and σmin (Aj) denote the maximum and mini-

mum singular values of the affine transformation Aj , see

Fig. 3.

The energy functional we are interested in maximizing

is as follows:

E (S1, S2) = max
S1⊆S1
S2⊆S2

ψ1 (S1, S2) + ψ2 (S1) + ψ3 (S1)

s.t. max
j

D (Aj) ≤ C

(8)

Normalized Matching Score ψ1 (S1, S2). We want to se-

lect regions with high matching scores signalling successful
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visual alignment as stated in property (1). To achieve this,

we use the following term in the objective functional:

ψ1 (S1, S2) =

∑n

o=1 F (rio , ˆrio,ko
)

max
ri∈S1
ˆri,k∈S2

F (ri, ˆri,k)
(9)

which normalizes the object part matching scores.

Normalized Grid Score ψ2 (S1). Representing regions

with their center coordinates normalizes them across re-

gional area. This representation helps define a maximal

cover of the domain of r1 without biasing the process to-

wards selecting regions with greater area. We first divide

r1 into m tiles. Let Qm denote the region of the mth tile.

We count the number of tiles covered by S1 normalized by

its maximum achievable value by S1 which defines the nor-

malized grid score:

ψ2 (S1) =
|{m : ∃ center (rio) ∈ Qm}|

|{m : ∃ center (ri) ∈ Qm}|
(10)

where |·| is the cardinality operator.

Normalized Convex Hull Score ψ3 (S1). Though the aver-

age grid score, ψ2 (S1), targets to select as many uniquely

centered regions as possible, it has no control over their con-

figuration. The regions corresponding to the center coor-

dinates that are nearby are likely to cover r1 locally com-

pared to the regions whose center coordinates are far apart.

Hence, the convex hull score, on the other hand, can com-

plement the normalized grid score by maximizing the spa-

tial diversity of the selected regions in S1:

ψ3 (S1) =
area (Conv ({center (rio)}))

area (Conv ({center (ri)}))
(11)

where Conv denotes the convex hull. The normalized grid

and convex hull scores together are used to achieve the

(2)nd desirable property listed.

The faces, F (S1), are assumed to undergo piecewise

affine transformations. By simultaneously composing r1
and bounding the maximal conformal distortion of the faces

of the Delaunay triangulation, T (S1), we aim to realize

a compositional process satisfying all the abovementioned

properties.

3.3.1 Optimization

Beam Search. Maximizing the objective functional in Eq. 8

is NP-hard. Note that the objective functional without the

constraints is unbounded, i.e., the maximum is achieved

when S1 = S1. However, the cardinality of S1 is not known

beforehand when constraints are considered as well. To pro-

pose a solution, we opt for using a greedy algorithm based

on beam search [27]. Beam search is a heuristic algorithm

which, at each iteration, expands a solution set from the

most promising limited set of solutions of the previous it-

eration. We start with an empty solution set and try to pop-

ulate as many matching candidates as possible maximizing

the objective while satisfying the distortion constraints, see

Algorithm 1.
Algorithm 1 Beam Search
Input: S1, S2, and b

Output: S1 and S2
Let result be a max priority queue of size 1 storing the solution sets S1, S2 and its

priority being the energy defined in Eq. 8.

Let beam, and beam∗ be max priority queues of size b storing the candidate

solution sets sorted with respect to their energies defined in Eq. 8.

1: procedure BEAMSEARCH(S1,S2, b)

2: result← {}
3: beam← {}
4: Pick the best b candidate solution sets of size 3 using brute force search max-

imizing Eq. 8 and update beam and result.

5: repeat

6: energy ← OBJECTIVEVALUE(result)
7: beam∗ ← {}
8: for c ∈ beam do

9: result.push(c)
10: for i = 1 to N do

11: if (�e ∈ c : center (ri) = center (e)) then � There does

not exist any element in c with center coordinate center (ri)
12: for k = 1 to K do

13: add c ∪ {ri, center (ri) , ˆri,k, center ( ˆri,k)} to

beam∗

14: end for

15: end if

16: end for

17: end for

18: beam← beam∗

19: until energy = OBJECTIVEVALUE(result)
20: return result.top()
21: end procedure

22: function OBJECTIVEVALUE(result)

23: return

{
−∞ if result = {}

E (result.top()) otherwise

24: end function

Factor Graph. Once an approximate solution, S1 and S2,

to Eq. 8 is obtained, we propose to fine-tune it as the region

matches might not be perfectly localized due to the coarse

sliding window search process. To this end, we do a dense

but local sliding window search around the center coordi-

nates of the regions in S2, and generate at most Z locally

maximal fine match candidates for each region in S1. Let

S3 = { ˜rio,zo} , zo ∈ [1..Z] denote the set of fine match re-

gion candidates. We consider a factor graph model defined

on the graph of the Delaunay triangulation introduced in the

subsection 3.3 i.e., T (S1) = (V (S1) ,F (S1)). Our factor

graph model contains two types of factors: (1) a factor func-

tion for each vertex quantifying the region matching and (2)

a factor function for each face representing the conformal

distortion induced by its respective affine transformation.

Intuitively, these two types of factors serve for simultane-

ously finding a high scoring configuration of matches with

low geometric distortion. The factor graph model is given

as follows:

PΦ (S3) =
1

Z

n∏
o=1

φV (rio , ˜rio,zo)

|F(S1)|∏
j=1

φF

(
Ãj

)
(12)

2013



where φV (rio , ˜rio,zo) = F (rio , ˜rio,zo) and φF

(
Ãj

)
=

D

(
Ãj

)
=

σmax(Ãj)
σmin(Ãj)

are the vertex and face factor func-

tions respectively. We use the sum-product algorithm to ob-

tain the most likely configuration estimate of Eq. 12.

3.4. Flow estimation

Having estimated the most likely match configuration

under the piecewise affine geometric transformation model,

we compose the dense flow field relating I1 and I2 in two

different ways which are detailed next.

Linear Warp. The bounding boxes of the matched object

parts {rio}, and { ˜rio,zo} could be used to define piecewise

linear warps in order to compose r1. As the object part

regions can have overlaps, it is likely that a point in the do-

main of r1 is covered by many different object part regions.

This necessitates a linear warp transformation assignment

for each point. We propose to assign each point, the linear

warp transformation induced by the region matches having

the highest matching score. The flow vectors for the points

that are not composed and that are outside r1 are obtained

by propagation as done in [30]. We use a bilateral filter as a

final step to get rid of any possible boundary artifacts.

Thin Plate Spline Warp. The thin plate spline inter-

polant (TPS) could also be used to obtain a dense flow

field. We use the sets of matched center coordinate pairs

{center (rio)}, and {center ( ˜rio,zo)} to obtain the TPS

warp.

4. Experiments

We use several semantic correspondence benchmark

datasets to evaluate our proposed method quantitatively and

qualitatively. In all the following experiments, we fix the

parameters of our algorithm to the following values: K,

which controls the number of coarse region match candi-

dates, is set to 20, C, the distortion threshold, is set to 2, the

beam size b of the Beam Search algorithm is set to 4, and Z,

which denotes the number of fine region match candidates,

is set to 10.

The JR dataset. The JR dataset [26] consists of three

sets: FG3DCar, JODS, and PASCAL totalling 400 image

pairs. The dataset contains dense flow field ground-truth

of foreground objects. The matching accuracy is evaluated

on a normalized scale of foreground object bounding box

whose larger dimension is 100 pixels. The Euclidean dis-

tance between the ground-truth and the estimated flow vec-

tor is measured and matches with errors of under 5 pixels

are deemed correct, following the work of [26].

Table 1 shows the comparison of the matching accura-

cies of several state-of-the-art algorithms. Among the oth-

ers, our method achieves the best performance on the PAS-

CAL subset. The performances obtained for the FG3DCar

Methods supervision FG3DCar JODS PASCAL Avg.

SIFT Flow [19] u 0.63 0.51 0.36 0.50

DSP [11] u 0.49 0.47 0.38 0.45

PF [6] u 0.79 0.65 0.53 0.66

Yang et al. [30] u 0.87 0.71 0.73 0.77

Zhou et al. [33] s 0.72 0.51 0.44 0.56

FCSS [12] s 0.83 0.66 0.49 0.66

Ours (Linear Warp) u 0.77 0.67 0.80 0.75

Ours (TPS Warp) u 0.78 0.68 0.80 0.75

Table 1: Flow accuracy rate with an error threshold of 5 pixels on

the JR dataset. (u:unsupervised, s:supervised)

and the JODS subsets are also promising. Fig. 4 shows

some qualitative dense correspondence results. All the com-

peting state-of-the-art algorithms are challenged when the

scales of the foreground objects are highly different. Thanks

to the co-localization step, our method is able to correctly

align the foreground objects.

The PF-WILLOW dataset. The PF-WILLOW dataset [6]

contains, in total, 900 pairs of images from 5 object classes,

which are face, car, motorbike, duck and bottle. The dataset

contains ground-truth keypoint annotations. The matching

accuracy is evaluated using the PCK metric [32] between

the warped and the ground-truth keypoints. If the ground-

truth keypoint lies within αmax (h,w) pixels of the warped

keypoint, where h and w denote the height and the width of

the foreground object bounding box, then the estimation is

deemed correct. The standard benchmark on this dataset

uses α = 0.1, which is also used in this paper.

Table 2 shows the comparison of the matching accura-

cies of several state-of-the-art algorithms. On average, our

proposed method achieves comparable performance and in

several object categories such as car, motorbike and bottle

obtains higher performances. Fig. 5 shows some qualita-

tive dense correspondence results. Our method obtains high

quality correspondences and keeps the integrity of objects

under the warp transformation. The competing state-of-the-

art algorithms are again challenged when there is significant

amount of background clutter and/or when the viewpoint

changes.

The PF-PASCAL dataset. The PF-PASCAL dataset [6]

contains 1351 pairs of images of 20 PASCAL object cate-

gories. The matching accuracy is again evaluated using the

PCK metric.

Table 3 shows the comparison of the matching accura-

cies of several state-of-the-art algorithms. Our method ob-

tains very good performance on some of the object cate-

gories and outperforms many other competing algorithms.

Fig. 6 shows some qualitative dense correspondence results.

The Caltech-101 dataset. The Caltech-101 dataset [15]

contains images of 101 object categories. The benchmark

protocol for semantic correspondence uses 15 random im-

age pairs from each category making 1515 distinct image

pairs in total. We use the same set of images used in [6].

Three different quantitative evaluation metrics are used to

assess the quality of a dense correspondence field. These
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Image1 Image2

SIFT

Flow [19] DSP [11] FCSS [12]

Geometric

CNN [23]

Zhou et

al. [33]
Ours

(Linear Warp)

Ours
(TPS Warp)

Figure 4: Qualitative dense correspondence results on the JR dataset. The first two columns show a pair of images and columns three to

nine show warpings of the second image to the first image using dense pixel-wise correspondences. The last column shows the ground-truth

warp. Our method achieves high quality warps. Note how competing algorithms are challenged when the foreground objects are viewed

under different scales as demonstrated in the first row. Zoom in for better visibility.

Methods supervision car(S) car(G) car(M) duc(S) mot(S) mot(G) mot(M) win(w/o C) win(w/ C) win(M) Avg.

SIFT Flow [19] u 0.54 0.37 0.36 0.32 0.41 0.20 0.23 0.83 0.16 0.33 0.38

DSP [11] u 0.46 0.30 0.32 0.25 0.31 0.15 0.14 0.85 0.25 0.64 0.37

PF [6] u 0.86 0.60 0.53 0.64 0.49 0.25 0.29 0.91 0.37 0.65 0.56

Zhou et al. [33] s 0.77 0.34 0.52 0.42 0.34 0.19 0.20 0.78 0.19 0.38 0.41

FCSS [12] s - - - - - - - - - - 0.53

Geometric CNN [23] s - - - - - - - - - - 0.57

Ours (Linear Warp) u 0.83 0.62 0.53 0.44 0.52 0.27 0.28 0.87 0.46 0.60 0.54

Ours (TPS Warp) u 0.82 0.60 0.51 0.42 0.51 0.27 0.29 0.86 0.42 0.56 0.53

Table 2: PCK metric (α = 0.1) comparison of dense flow field on the PF-WILLOW dataset. (u:unsupervised, s:supervised)

Image1
Image2 SIFT

Flow [19] DSP [11] FCSS [12]

Geometric

CNN [23]

Zhou et

al. [33]
Ours

(Linear Warp)

Ours
(TPS Warp)

Figure 5: Qualitative dense correspondence results on the PF-WILLOW dataset. The first two columns show a pair of images and

columns three to nine show warpings of the second image to the first image using dense pixel-wise correspondences. Our method achieves

high quality warps. Large intra-class variations result in alignment failures for many of the state-of-the-art methods. Zoom in for better

visibility.

are (1) the label transfer accuracy (LT-ACC), which trans-

fers the annotated class labels of an exemplar image using

the estimated dense correspondence field and counts the

number of correctly labeled pixels in the test image, (2)

the IoU metric, and (3) the localization error (LOC-ERR),

which measures the localization error of pixels with respect

to object bounding boxes.

Table 4 shows the comparison of the matching accura-

cies of several state-of-the-art algorithms. Our method, on

this dataset, does not have any significant advantage over

the other methods. The reason for this is that the dataset

contains many different object categories for which the ob-

ject detector we use is not trained, hindering the process of

correctly co-localizing the foreground objects. Neverthe-

less, as demonstrated in Fig. 7, high quality dense corre-

spondence results could sometimes be achieved.

Failure cases: Upon visual inspection of the failure cases,

we have observed that many of them stem from an incorrect

foreground object co-localization. An example is shown in

Fig. 8.

5. Conclusion

We have proposed an unsupervised dense semantic cor-

respondence algorithm based on a compositional process

by first detecting and co-localizing the foreground objects.

Owing to the bounded geometric distortion constraints on

the piece-wise affine transformations adopted, high qual-

ity dense motion fields are obtained. The proposed method
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Methods supervision aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv Avg.

SIFT Flow [19] u 0.61 0.56 0.20 0.34 0.32 0.54 0.56 0.26 0.29 0.21 0.33 0.17 0.23 0.43 0.18 0.17 0.17 0.31 0.41 0.34 0.33

DSP [11] u 0.64 0.56 0.17 0.27 0.38 0.51 0.55 0.20 0.23 0.24 0.19 0.15 0.23 0.41 0.15 0.11 0.18 0.27 0.35 0.28 0.30

PF [6] u 0.75 0.76 0.34 0.41 0.55 0.71 0.73 0.32 0.41 0.41 0.21 0.27 0.38 0.57 0.29 0.17 0.33 0.34 0.54 0.46 0.45

Zhou et al. [33] s 0.58 0.35 0.15 0.27 0.36 0.40 0.42 0.23 0.26 0.29 0.22 0.20 0.13 0.33 0.16 0.18 0.48 0.27 0.34 0.28 0.30

FCSS [12] s - - - - - - - - - - - - - - - - - - - - 0.46

Ours (Linear Warp) u 0.71 0.73 0.27 0.22 0.48 0.72 0.76 0.38 0.27 0.50 0.22 0.25 0.39 0.58 0.29 0.30 0.27 0.28 0.40 0.35 0.42

Ours (TPS Warp) u 0.71 0.72 0.25 0.20 0.44 0.68 0.74 0.38 0.27 0.47 0.17 0.24 0.36 0.57 0.28 0.30 0.27 0.27 0.35 0.27 0.40

Table 3: PCK metric (α = 0.1) comparison of dense flow field on the PF-PASCAL dataset. (u:unsupervised, s:supervised)

Image1 Image2

SIFT

Flow [19] DSP [11] FCSS [12]

Geometric

CNN [23]

Zhou et

al. [33]
Ours

(Linear Warp)

Ours
(TPS Warp)

Figure 6: Qualitative dense correspondence results on the PF-PASCAL dataset. The first two columns show a pair of images and

columns three to nine show warpings of the second image to the first image using dense pixel-wise correspondences. Our method achieves

high quality warps. Zoom in for better visibility.

Image1 Image2

SIFT

Flow [19] DSP [11] FCSS [12]

Geometric

CNN [23]

Zhou et

al. [33]
Ours

(Linear Warp)

Ours
(TPS Warp)

Figure 7: Qualitative dense correspondence results on the Caltech-101 dataset. The first two columns show a pair of images and

columns three to nine show warpings of the second image to the first image using dense pixel-wise correspondences. Our method achieves

high quality warps. Note how the corresponding spirals of a pair of nautili in the second row are correctly aligned. Zoom in for better

visibility.

yields encouraging performances as demonstrated on sev-

eral semantic dense correspondence benchmark datasets

both qualitatively and quantitatively.

Image1
Image2 Ours

(Linear Warp)

Figure 8: A failure example from the Caltech-101 dataset. Al-

though it is able to establish geometrically coherent matches, our

algorithm can fail if the foreground objects are incorrectly co-

localized.
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Methods supervision LT-ACC IoU LOC-ERR

SIFT Flow [19] u 0.75 0.48 0.32

DSP [11] u 0.77 0.47 0.35

PF [6] u 0.78 0.50 0.25

Yang et al. [30] u 0.81 0.55 0.19

FCSS [12] s 0.80 0.50 0.21

Geometric CNN [23] s 0.82 0.56 0.25

Ours (Linear Warp) u 0.76 0.44 0.37

Ours (TPS Warp) u 0.76 0.43 0.39

Table 4: Matching accuracy on the Caltech-101 dataset.

(u:unsupervised, s:supervised)
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