Subpixel Semantic Flow Supplementary Material

Berk Sevilmis
berk_sevilmis@brown.edu
Benjamin B. Kimia
benjamin_kimia@brown.edu

LEMS
Brown University
Providence, RI 02912 USA

In this supplementary material we provide the details of optimizing the objective function of the proposed subpixel semantic flow approach.

1 Optimization

We first derive the minimization of the subpixel semantic flow approach without bidirectional flow consistency. Consider the objective function in the continuous spatial domain:

$$
\begin{equation*}
E(u, v)=\int \psi\left(\sum_{k}\left|C_{2}(\mathbf{p}+\mathbf{w}(\mathbf{p}), k)-C_{1}(\mathbf{p}, k)\right|^{2}\right) d \mathbf{p}+\alpha \int \psi\left(|\nabla u(\mathbf{p})|^{2}+|\nabla v(\mathbf{p})|^{2}\right) d \mathbf{p} \tag{1}
\end{equation*}
$$

where $\mathbf{w}(\mathbf{p})=(u(\mathbf{p}), v(\mathbf{p}))$ is the flow field we wish to obtain relating images I_{1} and I_{2}, $\psi\left(x^{2}\right)=\sqrt{x^{2}+\varepsilon^{2}}$ with $\varepsilon=0.001$ is a robust function, namely a differentiable, convex approximation of the L^{1} norm, and $C_{1}($.$) and C_{2}($.$) are densely extracted, normalized (zero$ mean, unit variance) Geometric Blur [$\mathbb{\square}$] descriptors treated as multi-channel images indexed by k. We take a gradient descent approach to minimize the above objective function and follow the notation used in [$\square]$. Let us assume an initial guess of the flow field, $\mathbf{w}_{\mathbf{0}}$, is available and we are interested in the best increment direction $d \mathbf{w}=(d u, d v)$. The perturbation around the initial flow field, $\mathbf{w}_{\mathbf{0}}$, yields the following objective function:

$$
\begin{align*}
E(d u, d v)= & \int \psi\left(\sum_{k}\left|C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k)\right|^{2}\right) d \mathbf{p}+ \\
& \alpha \int \psi\left(\left|\nabla\left(u_{0}(\mathbf{p})+d u(\mathbf{p})\right)\right|^{2}+\left|\nabla\left(v_{0}(\mathbf{p})+d v(\mathbf{p})\right)\right|^{2}\right) d \mathbf{p} \tag{2}
\end{align*}
$$

We linearize the correlation transform images around the initial flow field and obtain:

$$
\begin{align*}
C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p}), k\right) \approx & C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)+\frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial x} d u(\mathbf{p})+ \\
& \frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial y} d v(\mathbf{p}) \tag{3}
\end{align*}
$$

(c) 2017. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

$$
\begin{align*}
C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k) \approx & C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k)+ \\
& \frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial x} d u(\mathbf{p})+ \\
& \frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial y} d v(\mathbf{p}) . \tag{4}
\end{align*}
$$

We denote

$$
\begin{gather*}
C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k)=C_{t}(\mathbf{p}, k) \tag{5}\\
\frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial x}=C_{x}(\mathbf{p}, k) \tag{6}\\
\frac{\partial C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p}), k\right)}{\partial y}=C_{y}(\mathbf{p}, k) \tag{7}
\end{gather*}
$$

so that

$$
\begin{equation*}
C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k) \approx C_{t}(\mathbf{p}, k)+C_{x}(\mathbf{p}, k) d u(\mathbf{p})+C_{y}(\mathbf{p}, k) d v(\mathbf{p}) . \tag{8}
\end{equation*}
$$

We vectorize $u_{0}, v_{0}, d u, d v$ into $U, V, d U, d V$, obtain diagonal matrices $\mathbf{C}_{x}(k)$, and $\mathbf{C}_{y}(k)$ from $C_{x}(\mathbf{p}, k)$ and $C_{y}(\mathbf{p}, k)$ and similarly column vector $C_{t}(k)$ from $C_{t}(\mathbf{p}, k)$ by spanning all pixels \mathbf{p}. We denote \mathbf{D}_{x} and \mathbf{D}_{y} to be derivative filters in the direction of x and y respectively and introduce $\delta_{\mathbf{p}}$ as an indicator column vector whose value is 1 only at \mathbf{p}. The objective function can then be evaluated on a discrete spatial domain as follows:

$$
\begin{align*}
E(d U, d V)= & \sum_{\mathbf{p}} \psi\left(\sum_{k}\left[C_{t}(\mathbf{p}, k)+C_{x}(\mathbf{p}, k) d u(\mathbf{p})+C_{y}(\mathbf{p}, k) d v(\mathbf{p})\right]^{2}\right)+ \\
& \alpha \sum_{\mathbf{p}} \psi\left(\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(V+d V)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(V+d V)\right]^{2}\right) \tag{9}
\end{align*}
$$

$$
\begin{align*}
E(d U, d V)= & \sum_{\mathbf{p}} \psi\left(\sum_{k}\left[\delta_{\mathbf{p}}^{T} C_{t}(k)+\delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right]^{2}\right)+ \\
& \alpha \sum_{\mathbf{p}} \psi\left(\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(V+d V)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(V+d V)\right]^{2}\right) \tag{10}
\end{align*}
$$

Note that this discretization is due to discrete spatial domain of images and not the discretization of the flow field, hence $d U$ and $d V$ are considered to be continuous variables.

Let $f_{\mathbf{p}}$ and $g_{\mathbf{p}}$ be the arguments of the robust functions:

$$
\begin{gather*}
f_{\mathbf{p}}=\sum_{k}\left[\delta_{\mathbf{p}}^{T} C_{t}(k)+\delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right]^{2} \tag{11}\\
g_{\mathbf{p}}=\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(U+d U)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x}(V+d V)\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y}(V+d V)\right]^{2} \tag{12}
\end{gather*}
$$

We have

$$
\begin{equation*}
E(d U, d V)=\sum_{\mathbf{p}} \psi\left(f_{\mathbf{p}}\right)+\alpha \sum_{\mathbf{p}} \psi\left(g_{\mathbf{p}}\right) \tag{13}
\end{equation*}
$$

Using the 1 st-order necessary condition of a local minimizer, we require:

$$
\begin{equation*}
\frac{\partial E(d U, d V)}{\partial d U}=0, \frac{\partial E(d U, d V)}{\partial d V}=0 \tag{14}
\end{equation*}
$$

Let us consider $\frac{\partial E(d U, d V)}{\partial d U}$. The derivation of $\frac{\partial E(d U, d V)}{\partial d V}$ is analogous.

$$
\begin{gather*}
\frac{\partial E(d U, d V)}{\partial d U}=\sum_{\mathbf{p}} \psi^{\prime}\left(f_{\mathbf{p}}\right) \cdot \frac{\partial f_{\mathbf{p}}}{\partial d U}+\alpha \psi^{\prime}\left(g_{\mathbf{p}}\right) \cdot \frac{\partial g_{\mathbf{p}}}{\partial d U} \tag{15}\\
\frac{\partial f_{\mathbf{p}}}{\partial d U}=\sum_{k} 2 \cdot\left[\delta_{\mathbf{p}}^{T} C_{t}(k)+\delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right] \cdot \frac{\partial\left[\delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U\right]}{\partial d U} \\
=\sum_{k} 2 \cdot\left[\delta_{\mathbf{p}}^{T} C_{t}(k)+\delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right] \cdot\left[\mathbf{C}_{x}(k) \delta_{\mathbf{p}}\right] \\
=\sum_{k} 2 \cdot\left[C_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} C_{t}(k)+\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right] \tag{16}
\end{gather*}
$$

We are able to rotate the direction of multiplication in the above lines because the terms inside the bracket on the left hand side are scalars.

$$
\begin{align*}
\frac{\partial g_{\mathbf{p}}}{\partial d U} & =\frac{\partial}{\partial d U}\left[\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x} U+\delta_{\mathbf{p}}^{T} \mathbf{D}_{x} d U\right]^{2}+\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y} U+\delta_{\mathbf{p}}^{T} \mathbf{D}_{y} d U\right]^{2}\right] \\
& =2 \cdot\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{x} U+\delta_{\mathbf{p}}^{T} \mathbf{D}_{x} d U\right] \cdot\left[\mathbf{D}_{x}^{T} \delta_{\mathbf{p}}\right]+2 \cdot\left[\delta_{\mathbf{p}}^{T} \mathbf{D}_{y} U+\delta_{\mathbf{p}}^{T} \mathbf{D}_{y} d U\right] \cdot\left[\mathbf{D}_{y}^{T} \delta_{\mathbf{p}}\right] \\
& =2 \cdot\left[\mathbf{D}_{x}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{x} U+\mathbf{D}_{x}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{x} d U+\mathbf{D}_{y}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{y} U+\mathbf{D}_{y}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{y} d U\right] \\
& =2 \cdot\left[\left(\mathbf{D}_{x}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{y}\right)(U+d U)\right] \tag{17}
\end{align*}
$$

Combining the above terms, Eq. 16 and Eq. 17, we obtain:

$$
\begin{align*}
\frac{\partial E(d U, d V)}{\partial d U}= & \sum_{\mathbf{p}} \psi^{\prime}\left(f_{\mathbf{p}}\right) \cdot\left[\sum_{k} 2 \cdot\left[\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} C_{t}(k)+\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U+\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right]\right]+ \\
& \alpha \psi^{\prime}\left(g_{\mathbf{p}}\right) \cdot\left[2 \cdot\left[\left(\mathbf{D}_{x}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{y}\right)(U+d U)\right]\right] \tag{18}
\end{align*}
$$

We note that $\sum_{\mathbf{p}} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T}=\mathbf{I}$. Introducing the diagonal matrices associated with the vector of the derivative of the robust function values at every $f_{\mathbf{p}}$ and $g_{\mathbf{p}}$, namely Ψ_{f}^{\prime} and Ψ_{g}^{\prime}, we note that the following equalities hold:

$$
\begin{gather*}
\sum_{\mathbf{p}} \psi^{\prime}\left(f_{\mathbf{p}}\right) \cdot\left[\sum_{k} 2 \cdot\left[\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} C_{t}(k)\right]\right]=2 \cdot \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot C_{t}(k)\right] \tag{19}\\
\sum_{\mathbf{p}} \psi^{\prime}\left(f_{\mathbf{p}}\right) \cdot\left[\sum_{k} 2 \cdot\left[\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{x}(k) d U\right]\right]=2 \cdot \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}^{2}(k)\right] \cdot d U \tag{20}\\
\sum_{\mathbf{p}} \psi^{\prime}\left(f_{\mathbf{p}}\right) \cdot\left[\sum_{k} 2 \cdot\left[\mathbf{C}_{x}(k) \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{C}_{y}(k) d V\right]\right]=2 \cdot \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] \cdot d V \tag{21}\\
\sum_{\mathbf{p}} \psi^{\prime}\left(g_{\mathbf{p}}\right) \cdot\left[2 \cdot\left[\mathbf{D}_{x}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{x}\right]\right]=2 \cdot \mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x} \tag{22}
\end{gather*}
$$

$$
\sum_{\mathbf{p}} \psi^{\prime}\left(g_{\mathbf{p}}\right) \cdot\left[2 \cdot\left[\mathbf{D}_{y}^{T} \delta_{\mathbf{p}} \delta_{\mathbf{p}}^{T} \mathbf{D}_{y}\right]\right]=2 \cdot \mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}
$$

where we have used the fact that diagonal matrix multiplication is commutative. At a local minimum we require the gradient to vanish, hence

$$
\begin{array}{r}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}^{2}(k)\right] \cdot d U+\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] \cdot d V+\alpha \cdot\left[\mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}\right] \cdot d U= \\
-\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot C_{t}(k)\right]-\alpha \cdot\left[\mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}\right] \cdot U \tag{24}
\end{array}
$$

The term $\mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}$ is called the Laplacian, \mathbf{L}, operator. Analogously with similar derivation we obtain the first order necessary condition for $d V$:

$$
\begin{array}{r}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] \cdot d U+\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}^{2}(k)\right] \cdot d V+\alpha \cdot\left[\mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}\right] \cdot d V= \\
-\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}(k) \cdot C_{t}(k)\right]-\alpha \cdot\left[\mathbf{D}_{x}^{T} \Psi_{g}^{\prime} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \Psi_{g}^{\prime} \mathbf{D}_{y}\right] \cdot V \tag{25}
\end{array}
$$

Combining the above equalities and using a matrix-vector form we get:

$$
\begin{align*}
& {\left[\begin{array}{ll}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}^{2}(k)\right]+\alpha \cdot \mathbf{L} & \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] \\
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] & \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}^{2}(k)\right]+\alpha \cdot \mathbf{L}
\end{array}\right] \cdot\left[\begin{array}{c}
d U \\
d V
\end{array}\right]=} \\
&-\left[\begin{array}{c}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot C_{t}(k)\right]+\alpha \cdot \mathbf{L} \cdot U \\
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}(k) \cdot C_{t}(k)\right]+\alpha \cdot \mathbf{L} \cdot V
\end{array}\right] \tag{26}
\end{align*}
$$

We solve the above linear system using coarse to fine refining scheme on a Gaussian pyramid with downsampling rate of 0.5 summarized in Algorithm 1.
Bidirectional flow consistency: Adding bidirectional flow consistency constraint extends the objective function as follows:

$$
\begin{align*}
E(u, v)= & \int \psi\left(\sum_{k}\left|C_{2}(\mathbf{p}+\mathbf{w}(\mathbf{p}), k)-C_{1}(\mathbf{p}, k)\right|^{2}\right) d \mathbf{p}+\alpha \int \psi\left(|\nabla u(\mathbf{p})|^{2}+|\nabla v(\mathbf{p})|^{2}\right) d \mathbf{p}+ \\
& \beta \int \phi\left(\left|\mathbf{w}(\mathbf{p})+\mathbf{w}_{\mathbf{c}}(\mathbf{p})\right|^{2}\right) d \mathbf{p} \tag{27}
\end{align*}
$$

where $\mathbf{w}_{\mathbf{c}}$ denotes the flow field that is intended to be consistent with. We choose L^{2} norm to measure flow consistency, i.e., $\phi\left(x^{2}\right)=x^{2}$. Similar to the above derivation, the perturbation around an initial flow field, $\mathbf{w}_{\mathbf{0}}$, yields the following objective function:

$$
\begin{align*}
E(d u, d v)= & \int \psi\left(\sum_{k}\left|C_{2}\left(\mathbf{p}+\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p}), k\right)-C_{1}(\mathbf{p}, k)\right|^{2}\right) d \mathbf{p}+ \\
& \alpha \int \psi\left(\left|\nabla\left(u_{0}(\mathbf{p})+d u(\mathbf{p})\right)\right|^{2}+\left|\nabla\left(v_{0}(\mathbf{p})+d v(\mathbf{p})\right)\right|^{2}\right) d \mathbf{p}+ \\
& \beta \int \phi\left(\left|\mathbf{w}_{\mathbf{0}}(\mathbf{p})+d \mathbf{w}(\mathbf{p})+\mathbf{w}_{\mathbf{c}}(\mathbf{p})\right|^{2}\right) d \mathbf{p} \tag{28}
\end{align*}
$$

```
Algorithm 1: Subpixel Semantic Flow
    Input \(\quad: I_{1}, I_{2}, \alpha\), max_iter
    Output : w
    Initialization: Set up \(P\) level pyramids of correlation transforms of Geometric
                Blur [ [ ] descriptors, \(C_{1}\) and \(C_{2}\).
    for level=P:-1:1 do
        if level \(=P\) then
                \(\mathbf{w}=0\)
        else
            upsample \(\mathbf{w}\) to current level resolution
        end
        for iter=1:max_iter do
            compute \(\Psi_{f}^{\prime}\) and \(\Psi_{g}^{\prime}\) based on the current estimate of \(\mathbf{w}\)
            solve Eq. 26
            update \(\mathbf{w} ; \mathbf{w}=\mathbf{w}+[d U ; d V]\)
            median filter \(\mathbf{w}\) to eliminate outliers
        end
    end
```

We shall only consider the effect of the last term. Vectorizing $u_{0}+u_{c}$ and $v_{0}+v_{c}$ as U_{c} and V_{c} respectively and evaluating the objective function on a discrete spatial domain as done before, we introduce the following new term:

$$
\begin{equation*}
c_{\mathbf{p}}=\left[\delta_{\mathbf{p}}^{T}\left(U_{c}+d U\right)\right]^{2}+\left[\delta_{\mathbf{p}}^{T}\left(V_{c}+d V\right)\right]^{2} . \tag{2}
\end{equation*}
$$

The energy function on a discrete spatial domain then takes the following form:

$$
\begin{equation*}
E(d U, d V)=\sum_{\mathbf{p}} \psi\left(f_{\mathbf{p}}\right)+\alpha \sum_{\mathbf{p}} \psi\left(g_{\mathbf{p}}\right)+\beta \sum_{\mathbf{p}} \phi\left(c_{\mathbf{p}}\right) . \tag{30}
\end{equation*}
$$

Using the 1st-order necessary condition of a local minimizer we obtain the following linear system:

$$
\left[\begin{array}{cc}
\left.\begin{array}{cc}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}^{2}(k)\right]+\alpha \cdot \mathbf{L}+\beta \cdot \mathbf{I} & \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] \\
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot \mathbf{C}_{y}(k)\right] & \Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}^{2}(k)\right]+\alpha \cdot \mathbf{L}++\beta \cdot \mathbf{I}
\end{array}\right] \cdot\left[\begin{array}{c}
d U \\
d V
\end{array}\right]= \\
& -\left[\begin{array}{c}
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{x}(k) \cdot C_{t}(k)\right]+\alpha \cdot \mathbf{L} \cdot U+\beta \cdot U_{c} \\
\Psi_{f}^{\prime} \cdot\left[\sum_{k} \mathbf{C}_{y}(k) \cdot C_{t}(k)\right]+\alpha \cdot \mathbf{L} \cdot V++\beta \cdot V_{c}
\end{array}\right] . \tag{3}
\end{array}\right.
$$

When considering a pair of images, we solve the above linear system using coarse to fine refining scheme on a Gaussian pyramid with downsampling rate of 0.5 in a coordinate descent fashion, where $\mathbf{w}_{\mathbf{c}}$ is replaced by current updates of $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$. This is summarized in Algorithm 2.

```
Algorithm 2: Bidirectionally Consistent Subpixel Semantic Flow
    Input \(\quad: I_{1}, I_{2}, \alpha, \beta\), max_iter
    Output : \(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\)
    Initialization: Set up \(P\) level pyramids of correlation transforms of Geometric
                Blur [ m ] descriptors, \(C_{1}\) and \(C_{2}\).
    for level=P:-1:1 do
        if level \(=P\) then
            \(\mathbf{w}_{\mathbf{1}}=0\)
            compute \(\Psi_{1 f}^{\prime}\) and \(\Psi_{1 g}^{\prime}\) based on the current estimate of \(\mathbf{w}_{\mathbf{1}}\)
            solve Eq. 26
            update \(\mathbf{w}_{\mathbf{1}} ; \mathbf{w}_{\mathbf{1}}=\mathbf{w}_{\mathbf{1}}+\left[d U_{1} ; d V_{1}\right]\)
            median filter \(\mathbf{w}_{\mathbf{1}}\) to eliminate outliers
                \(\mathbf{w}_{\mathbf{2}}=0\)
                compute \(\Psi_{2 f}^{\prime}\) and \(\Psi_{2 g}^{\prime}\) based on the current estimate of \(\mathbf{w}_{\mathbf{2}}\)
                solve Eq. 26
                update \(\mathbf{w}_{\mathbf{2}} ; \mathbf{w}_{\mathbf{2}}=\mathbf{w}_{\mathbf{2}}+\left[d U_{2} ; d V_{2}\right]\)
                median filter \(\mathbf{w}_{\mathbf{2}}\) to eliminate outliers
            else
                upsample \(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\) to current level resolution
            end
            \(\mathbf{w}_{\mathbf{1}}{ }^{(0)}=\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}{ }^{(0)}=\mathbf{w}_{\mathbf{2}}\)
            for iter=1:max_iter do
            compute \(\Psi_{1 f}^{\prime}\) and \(\Psi_{1 g}^{\prime}\) based on the current estimate of \(\mathbf{w}_{\mathbf{1}}{ }^{(\text {iter }-1)}\)
            solve Eq. 31 by replacing \(\mathbf{w}_{\mathbf{c}}\) with \(\mathbf{w}_{\mathbf{2}}{ }^{\text {(iter-1) }}\)
            update \(\mathbf{w}_{\mathbf{1}}{ }^{(\text {iter })} ; \mathbf{w}_{\mathbf{1}}{ }^{(\text {iter })}=\mathbf{w}_{\mathbf{1}}{ }^{(\text {iter }-1)}+\left[d U_{1} ; d V_{1}\right]\)
            median filter \(\mathbf{w}_{\mathbf{1}}{ }^{(\text {iter })}\) to eliminate outliers
            compute \(\Psi_{2 f}^{\prime}\) and \(\Psi_{2 g}^{\prime}\) based on the current estimate of \(\mathbf{w}_{\mathbf{2}}{ }^{(\text {iter }-1)}\)
            solve Eq. 31 by replacing \(\mathbf{w}_{\mathbf{c}}\) with \(\mathbf{w}_{\mathbf{1}}{ }^{\text {(iter }-1)}\)
            update \(\mathbf{w}_{\mathbf{2}}{ }^{(\text {iter })} ; \mathbf{w}_{\mathbf{2}}{ }^{(\text {iter })}=\mathbf{w}_{\mathbf{2}}{ }^{(\text {iter }-1)}+\left[d U_{2} ; d V_{2}\right]\)
            median filter \(\mathbf{w}_{\mathbf{2}}{ }^{(\text {iter })}\) to eliminate outliers
        end
    end
```


References

[1] Alexander C. Berg and Jitendra Malik. Geometric blur for template matching. In 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), with CD-ROM, 8-14 December 2001, Kauai, HI, USA, pages 607-614, 2001.
[2] Ce Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. PhD thesis, 2009.

