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In this supplementary material we provide the details of optimizing the objective function
of the proposed subpixel semantic flow approach.

1 Optimization

We first derive the minimization of the subpixel semantic flow approach without bidirectional
flow consistency. Consider the objective function in the continuous spatial domain:

E (u,v) =/w<;lCz(p+W(p),k)—Cl (p,k)|2> ap+o [y (IVu ()P +[9v(p)) dp

(D
where w(p) = (u(p),v(p)) is the flow field we wish to obtain relating images /; and b,
v (x*) = Vx> + €2 with € = 0.001 is a robust function, namely a differentiable, convex ap-
proximation of the L! norm, and C;(.) and C;(.) are densely extracted, normalized (zero
mean, unit variance) Geometric Blur [1] descriptors treated as multi-channel images indexed
by k. We take a gradient descent approach to minimize the above objective function and fol-
low the notation used in [2]. Let us assume an initial guess of the flow field, wy, is available
and we are interested in the best increment direction dw = (du,dv). The perturbation around
the initial flow field, wy, yields the following objective function:

E (du,dv) :/w <Z|Cz (p+wo(p)+dw(p).k)—C (p,k)lz) dp+
k

o [y (19 o () +du@)P+ 1V (o (0) + v @) )dp. @)
We linearize the correlation transform images around the initial flow field and obtain:

dC: (p+wo (p) ,k)
dx

dv(p) 3)

G (p+wo (p) +dw(p) k) = C2(p+wo (p).k) +

dC: (p+wo (p) ,k)
dy

du(p)+
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G (p+W0 (p) +dW(p) ak) —-C (pak) ~C (p+W0 (p) 7k) (& (p7k) +
I (P+Wo(p).K) |
e du(p)+
oC &
We denote
CZ (p+W0 (p),k)—C1 (pak) :Ct (pak) (5)
aC k
X
aC k
y
so that

G2 (p+wo (p) +dw(p),k) —Ci (p,k) = C; (p,k) +Cx (p, k) du(p) +Cy (p,k)dv(p). (8)

We vectorize ug, vo, du, dv into U, V, dU, dV, obtain diagonal matrices C, (k), and C, (k)
from C (p, k) and Cy (p, k) and similarly column vector C; (k) from C; (p, k) by spanning all
pixels p. We denote D, and D), to be derivative filters in the direction of x and y respectively
and introduce 8, as an indicator column vector whose value is 1 only at p. The objective
function can then be evaluated on a discrete spatial domain as follows:

E (dU,dV) Zw(Z p,k)+Cy (p,k)du(p)+Cy (p7k)dv(p)]2> +

a Xy ([87D. (U +av)) + [§D, (U +dU)]" + [ Du(V +aV)] "+ [87D, (v +av)])
p
©))

E(dU,dv) Z‘l’<): [STC, )+ 81 C. (k)du + 8] C, (k)dv]2> +
k
)

v (87D U +dv)) + [87D, (U +dU)]* + [ D (v +aV)]* + [8]D, (v +av)]*)
(10)
Note that this discretization is due to discrete spatial domain of images and not the discretiza-

tion of the flow field, hence dU and dV are considered to be continuous variables.
Let fp and g, be the arguments of the robust functions:

fo =Y [67C: (k) + 8T C (k) dU + 81 C, (k) av]? (11)
k

g = [8ID, (U +dU)|* + [8ID, (U +dU)]* + [8ID. (V +aV))* + [8ID, (v +aVv)]”.
(12)
We have
E(dU,av) =Y v (fy) +a) w(gp)- (13)
P P
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Using the 1Ist-order necessary condition of a local minimizer, we require:

JE(dU,dV) = JE(dU,dV)
adU =0, adv =0 (14
Let us consider % The derivation of W is analogous.
JE (dU, dV) fp agp
9f; d[87C, (k)dU
ﬁ :Zk:z- [87C, (k) + 8] Cy (k)dU + 8] Cy (k) dV] -M
—Zz (8, Ci (k )+5],Tcx( )dU + &) Cy (k)dV] - [Cy (k) &]
_22 8p8, C; (k) + Cx (k) 8,8, Cyc (k) dU + Cx (k) 8,81 Cy (k)dV]  (16)

We are able to rotate the direction of multiplication in the above lines because the terms
inside the bracket on the left hand side are scalars.

dg d 2

S === | [8/D.U +8]D.dU) + [§7D,U + &) DyaU]’|
=2-[8I DU + 8] DydU] - [D] 8] +2- [81 DU + 5, DydU| - [D] &
=2-[D] 8,8, DU +D! 8,8, D:dU +D! 8,8, D,U +D] 8,8, DydU]

=2-[(D] 8,8, D, +D] 8,8, Dy) (U +dU)] (17)
Combining the above terms, Eq. 16 and Eq. 17, we obtain:

IE (dU,dV) vy

50 Zz (k) 8p85 Ci (k) + Cy (k) 885 Cy (k) dU + Cy (k) 8,8, Cy (k) dV] | +

oy () [2-[(D] &8, D+ D5, Dy) (U+dU)]] (18)

We note that ), 51,5‘? = L. Introducing the diagonal matrices associated with the vector of

the derivative of the robust function values at every fp and gp, namely ‘I’/f and ‘I‘;,, we note
that the following equalities hold:

Y (f): [22 (k) 8,85 C: (k)] =2-‘P’f~[zcx<k>~ct(k> (19)
P k
le/(fp)~[ZZ-[Cx(k)%(SpTCx(k)dU} =2.%,- Y. C2 (k)| -aU (20)
p k k
Zu/(fp)-[22-[Cx(k)5pﬁgcy(k)dv} =29, Y C.(k)-C ()| -av @)
p k k
Y v (gp)- [2- [DT 8,87 D,]] =2-DI¥,D, (22)

p
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YV () [2- D] 8,8 D,]] =2-D]¥,D, 23)
P

where we have used the fact that diagonal matrix multiplication is commutative. At a local
minimum we require the gradient to vanish, hence
!
2
¥ - Zcx (k)
k

AU+, dV -+ - [DIW,D, +DIW,D, | -dU =

;CX (k) ! C)’ (k)

¥ | Y Ce (k)G (k)

~a- [D]¥,D,+D¥,D,|-U
k

(24)

The term D;‘P;,DX + D}T,‘P;,Dy is called the Laplacian, L, operator. Analogously with similar
derivation we obtain the first order necessary condition for dV':

lZC dU +¥ - ZCZ -dV +a- [Df‘P;,Dx+DyT‘P;,Dy} -dV =
¥, |YC (k)G (k)] —a-[DI¥,D,+D]¥,D,] -V
k
(25)
Combining the above equalities and using a matrix-vector form we get:
‘Pf (L CR (k)] + oL ‘Pf hyge (k) Cy(B)] | [ du ] _
Wi 5 Ce (k) Cy (k)] ¥ [T G (0)] +aL | | aV
Y [zkc (k)G (k)] + - L-U 6)
f'[zkcy(k) (k)] +a-L-V

We solve the above linear system using coarse to fine refining scheme on a Gaussian pyramid
with downsampling rate of 0.5 summarized in Algorithm 1.

Bidirectional flow consistency: Adding bidirectional flow consistency constraint extends
the objective function as follows:

k

£y = W<Z|C2 (b-+w(p).K)~Cy (p,k>|2) dp-+a [y (Vu@)P+[Vv(p)?) dp+

B [ 6 (Iwm)+we(®)?)dp @7

where w, denotes the flow field that is intended to be consistent with. We choose L2 norm to
measure flow consistency, i.e., ¢ (x*) = x?. Similar to the above derivation, the perturbation
around an initial flow field, wy, yields the following objective function:

E (du7dv) :/W (Z |C2 (p+w0 (P) +dw (P) 7k) -C (pk)|2> dp+
k

@ [ (19 (o (8) +du (1)) + 1V (v0 (p) + v (p) ) dp+
B [ 6 (Iwo(B)-+aw(p) +we (p) ) dp. (28)
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Algorithm 1: Subpixel Semantic Flow

Input 1, b, o, max_iter

Output HA 4

Initialization: Set up P level pyramids of correlation transforms of Geometric
Blur [1] descriptors, C; and C;.

1 for level=P:-1:1 do

2 if level=P then

3 | w=0

4 else

5 ‘ upsample w to current level resolution
6 end

7 for iter=1:max_iter do

8 compute ‘Plf and ‘I’; based on the current estimate of w
9 solve Eq. 26
10 update w; w = w+ [dU;dV]
1 median filter w to eliminate outliers
12 end
13 end

We shall only consider the effect of the last term. Vectorizing ug + u, and vy + v, as U, and
V. respectively and evaluating the objective function on a discrete spatial domain as done
before, we introduce the following new term:

cp = [6] (Ue+dU)]* + [8T (Ve +av))”. (29)

The energy function on a discrete spatial domain then takes the following form:

E(dU,aV) =} v (fp) -} v (gp) +BY 9 (cp)- (30)
P P P
Using the 1st-order necessary condition of a local minimizer we obtain the following linear
system:
¥ LG E] ta Ll ¥ NGHR)CHm] ] [ au } _
Y- Xk Ci (k) - Cy (k)] Y- [ G (k)] +o-L++p-1 av

le'[chx(k)'gz(k)}+a~L~U+B~UC a1

¥ Lk Cy (k)G ()] + - L-V4+B-V,

When considering a pair of images, we solve the above linear system using coarse to fine
refining scheme on a Gaussian pyramid with downsampling rate of 0.5 in a coordinate de-
scent fashion, where w, is replaced by current updates of wy and w,. This is summarized in
Algorithm 2.
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Algorithm 2: Bidirectionally Consistent Subpixel Semantic Flow

Input 211, b, a, B, max_iter

Output P W1,Wp

Initialization: Set up P level pyramids of correlation transforms of Geometric
Blur [1] descriptors, C; and C.

1 for level=P:-1:1 do
2 if level=P then
3 w; =0
4 compute ‘I’/l yand lP,1 ¢ based on the current estimate of wy
5 solve Eq. 26
6 update wy; w; = wy + [dU;;dVi]
7 median filter wq to eliminate outliers
8 Wy = 0
9 compute ‘I’/2 ¢ and ‘P;g based on the current estimate of wy
10 solve Eq. 26
11 update wy; wp = W + [dUs;d V5]
12 median filter w, to eliminate outliers
13 else
14 ‘ upsample wy, wy to current level resolution
15 end
16 W1(0> = Wi, Wz(O) =W
17 for iter=1:max_iter do
18 compute W . and ¥, , based on the current estimate of w; (¢/~1)
19 solve Eq. 31 by replacing w, with wy(rer—1)
20 update wy #€); wy(rer) = wyy ter=1) 4 (40, ;adv;]
21 median filter wy (“¢") to eliminate outliers
22 compute ‘I’/z ¢ and ‘P;g based on the current estimate of w(#¢/~1)
23 solve Eq. 31 by replacing w, with wy (77— 1)
24 update w ("), wy(irer) = wyy(iter=1) 4 (40, dV;]
25 median filter w(¢") to eliminate outliers
26 end

end

(5]
BNy
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