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Abstract

Current state-of-the-art dense correspondence algorithms establish correspondences
between pair of images by searching for a flow field that minimizes the distance between
local signatures (e.g., color histogram, SIFT descriptor) of aligned pixels while preserv-
ing smoothness. Agnostic to the global signatures (e.g., object membership, category of
object), these local signatures face difficulties in resolving alignment ambiguities when
scene content undergoes type and configuration variation. In this paper, we investigate
the effect of adding shape correspondence constraints either in the form of pair of cor-
responding contour fragments or pair of closed curves. We find the shape does not play
a significant role in optical flow and stereo correspondence but it does play a significant
role when scene content changes are large. We also explore using object proposals as a
way of providing shape constraints with encouraging results.

1 Introduction

Many of the computer vision tasks such as stereo correspondence, optical flow, biometric
user verification, and object recognition require the establishment of dense pixel correspon-
dences between pair of images which can differ in image acquisition setting, i.e., scene
content and scene configuration. On the one end of the spectrum is the narrow-baseline
stereo correspondence, where these variations are at a minimum since the same 3D scene
is captured from slightly different viewpoints. On the other extreme is the semantic image
alignment, where photometric and geometric variations are unbounded but it is still relevant
to establish correspondences between image pairs. This typically involves images captured
from different 3D scenes sharing similar characteristics such as containing same but differ-
ent instances of objects. In this setting, dense correspondences are useful in semantic image
segmentation [16], video depth estimation [12], image enhancement [9] efc.

Recent state-of-the-art approaches [3, 10, 13, 16, 18, 20, 22] attempt to compute corre-
spondences between pair of images by matching image signatures, e.g., color histograms,
SIFT descriptor [19], CNN features [14], extracted locally from pixels and enforce smooth-
ness on the correspondence field by enforcing spatial regularity. This type of an approach
works well when the underlying scene that gives rise to the two images are the same but
viewed under slightly different conditions, i.e., optical flow with small displacement, and
narrow-baseline stereo, or even wide-baseline multiview imagery. They perform reasonably
well when the object and/or the scene change instance to a very similar type. However, given
that the signature variation measure does not capture any semantic aspect of the scene be-
yond a local histogram over a neighborhood, it is challenged by semantically related images
featuring large visual variations.
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Figure 1: Shape aligned dense correspondence. (a) Spatial regularity in current state-of-the-art
methods only disambiguate matches which are not locally consistent, i.e., preferring the solid line
correspondence to dashed one. (b) Shape alignment can reduce the ambiguity further by ruling out
correspondences which violate inside-outside consistency. (c) A visual result. The warped source using
shape alignment constraint is clearly superior. (d) A correspondence is a transformation 7~ mapping
a point p in I to a point p in I. A local neighborhood Ny (p) restricts pixels which contribute to the
descriptor at p.

Our approach is to introduce certain semantic concepts into the correspondence pro-
cess. Specifically, in this paper, we explore the effect of shape as an additional guideline to
the variational correspondence process. We ask whether specifying a pair of corresponding
shapes can influence the correspondence process significantly and under what scenarios. We
also ask whether shape should be specified in the form of a contour fragment or in the form
of a closed curve bounding a region. Finally, when such corresponding shape constraints
are not available, we ask whether object proposals can serve this purpose and under what
conditions.

The rest of the paper is organized as follows. In Section 2, we formulate four related
state-of-the-art approaches under an umbrella. In Section 3 we discuss how shape can be
introduced as a constraint in the context of this formulation and how object proposals may
be used. Section 4 describes experiments which explore the effectiveness of the role of shape
in producing better correspondences. We will conclude that shape plays little role in opti-
cal flow, improves on correspondences for wide-baseline imagery, and is essential towards
providing meaningful correspondences under semantic alignment.

2 A Unifying View of Current Approaches

The problem of computing dense correspondences between two images, I and I, has gen-
erally relied on optimizing image similarity and smoothness of the correspondence. For-
mally, let Ny (p) denote a neighborhood of size M of point p, Fig. 1d. A dense corre-
spondence is a transformation 7 which takes a point p in image / to a point p in image
I, p=T(p). In analogy with optical flow, a vector field (flow field) V7 (p) is defined as
Vr(p) =p—p=T(p)— p, over which the regularity of 7 is represented. In some ap-
proaches the transformation 7 not only defines the dense correspondence, but also the scale
of image at which correspondence makes most sense.

Previous approaches have followed a variational approach to find the best correspon-
dence by defining an energy functional consisting of four terms,

E (T) - Edata(T) + Elimit flow (T) + Esmooth (T) + Egcale (T)
= Zp [faata(Nu (p) 7NM(T(p))) + fimit fiow (7 (p) — p)] + Z(p,ﬁ)eE [fsmooth (T(p), T(P))+ fscale (M(p),M(ﬁ))]

ey
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which in turn (i) optimize the similarity of the corresponding points p and p, (ii) penalize or
limit the extent of p deviating from p, (iii) enforce spatial smoothness on the correspondence,
and (iv) enforce scale consistency. We now describe four of the state-of-the-art techniques
in this framework.

First, the Patch Match approach [3] defines its data term as the sum of squared differences

faaaWNu(p) N (T(p)) = Y. 11(p) ~I(T(B))I, (2)

PENM(P)
or the difference in the SIFT descriptor, SD, over the neighborhood Ny,
faaaNu(p), Nig (T (p))) = ISD(Nw(p)) — SDNu (T (p)) |- 3)

Patch Match [3] does not have an explicit Ejjnit iow NOT Egmooth- The energy is optimized
by an iterative approach where an initial correspondence 7°(p) is defined by a random as-
signment. The transform is then iteratively updated to the transform of that neighbor that
minimizes the data term, i.e.,

T (p) = T'( argmin foaa(Nar (). Nt (T'(B) + (P~ B))) )+ (p— B)- 4)
pl(p.p)€E
In addition to the immediate neighbors, some random points in a larger neighborhood are
also considered to help the process converge globally. The optimization stops after a fixed
number of iterations. The Patch Match [3] algorithm approach finds an alignment of simi-
lar patches, but these patches may not enjoy spatial coherence, mainly because there is no
smoothness term in the correspondence energy.
Second, the SIFT Flow approach [16] uses the L' norm variant of the SIFT descriptor
difference of Eq. 3 as its data term. The limit flow energy term is defined as ||V (p)||1. The
smoothness energy is a truncated L' norm of the flow field variation in Ny,

fsmooth(T(P)aT(ﬁ)){(pu,;)eE = [IV7(p) = V7 (D)1, )

with the modification that the variation in horizontal and vertical components are upper
bounded by a predetermined threshold. The optimization is a variant of loopy belief prop-
agation. The results are excellent when the scale and orientation of objects are similar and
when the global arrangement is roughly similar. SIFT Flow [16] depicts better spatial coher-
ence as compared to Patch Match [3], Tables 1 and 2.

Third, the Deformable Spatial Pyramid (DSP) approach [13] is a two stage process. In
the first stage, the image is divided into blocks and a displacement is found for each block.
In the second stage, the flow field for each pixel in each block refines the block displace-
ment by optimizing the L' norm variant of the data term in Eq. 3 in a small window. The
displacement in the first stage is found by representing the image by a three level pyramid
consisting of the image divided into 1 x 1, 2 x 2 and 4 x 4 blocks,respectively. The pyramid
is represented by an interconnected graph of 21 nodes with connections to neighbors within
and across layers. The displacement at each node is constrained by parents and by neighbors
and 1s found by a SIFT Flow [16] like computation. The pyramid structure affords a global
perspective and improves correspondences as a result. When this global view fails, however,
the failed effect is propagated to finer scales in an unrecoverable fashion. Also, the second
stage is not always able to sufficiently fine tune neighbors across two adjacent blocks, lead-
ing to a blocky appearance.

Fourth, the Scale-Space SIFT Flow (SSF) approach [20] addresses the scale issue of
SIFT Flow [16] by introducing the concept of an optimal scale at each point. Initially, SIFT
Flow [16] correspondences for SIFT descriptors of varying scales, i.e., 12 x 12, 24 x 24,
48 x 48, 72 x 72, 96 x 96 are found, to obtain a scale-dependent data term for each point.
The initial scales of descriptors at each point are then computed by optimizing the scale-
dependent data term as well as a novel term involving scale smoothness, i.e.,
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Figure 2: Alignment constraints. (a) Contour fragment alignment prevents cross talk between the
right (R™, in blue) and left (R, in yellow) regions. (b) Closed curve alignment prevents cross talk
between inside (R, in blue), and outside (R™, in yellow).

fdata(NM(p)aNM(T(p))) = HSD(NM(p)) —SD(NM(T(p)))Hl, fscale(M(p)aM(ﬁ))

5:‘1\

(e = IM(p) = M(p)Ily
(6)

where M is fixed at 12 while M varies as specified above. The algorithm alternates in op-
timizing fdata + fsmooth @nd fqata + fscale Until convergence. This algorithm improves SIFT
Flow [16] results when there are significant scale changes, but unfortunately it inherits the
remaining issues surrounding SIFT Flow [16].

3 The Role of Shape in Improving Image
Correspondences

The role of shape as a constraint to improve correspondences can be explored by specify-
ing either a contour fragment, representing a portion of the shape silhouette, or a closed
curve bounding a full object or object part. First, assume that the contour fragment C(s) in
image I, where s is an arbitrary parameter, matches the contour C(§) in image I as shown
in Fig. 2a. Each curve separates two regions, (R~,R") for C(s) and (R~,R") for C(5),
each limited in spatial extent. The shape alignment requires that the correspondence re-
spects such separation, and avoid mapping R~ to Rt and R™ to R~. We extend the vari-
ational formulation in Eq. 1 by introducing an energy term that prevents "cross-talk", i.e.,
E(T) = Eprevious (T) + Ecrosstalk(T),

Eerossiac(T) = {0 L(p) = L(T(p))

w L(p) £ L(T(p). D

where Eprevious(7) is the energy term corresponding to any of the four previous techniques,
Eq. 1, and L and L are label images indicating contour or region membership.

Second, the shape constraint can take the form of correspondence between two closed
curves, i.e., closed curve C(s) in image I mapping to closed curve C(5) in image I. Here the
entire region inside/outside of one curve maps to the entire region inside/outside of the corre-
sponding curve respectively, as shown in Fig. 2b. Analogous to the case of contour fragment
correspondence, we prevent inside-outside crosstalk by using the same energy functional as
Eq. 7. The details of optimizing the energy functional with the shape-based energy term are
given in the supplementary material.

Shape alignment, whether in the form of a contour fragment or closed contour, provides
additional information which constrains the correspondence problem. Thus, it is naturally
expected that the performance would be improved. However, it is not a priori clear whether
it is the use of shape as a separator of regions in the image that is at work or whether just
adding additional correspondences is improving the results. Thus, we compare two scenar-
10s, one in which a set of N random point correspondences constrain the correspondence,
and one in which these N point correspondences arrange to define a shape. Our experiments
in Section 4 indicate that the addition of random correspondences has a marginal effect while
for points arranged as a shape, the effect can be significant and meaningful. Section 4 also
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shows that specifying corresponding shapes can significantly improve the correspondence
with large visual variation in pose or in content.

While these corresponding shapes can be provided by user annotation, we pose the ques-
tion of whether object proposals can provide such constraints automatically. For automat-
ically proposing shape constraints in the form of closed curves bounding regions, our ap-
proach makes the assumption that the category of one or more objects the two images have
in common is known, e.g., bird or horse. An object detector such as R-CNN [8] is used to
detect objects in images. Given a limited region of interest, category independent object pro-
posal methods, e.g., MCG [2] or CPMC [5] generate candidates for the shape of the detected
object. Then, a structured prediction framework is used to train a ranker to sort the proposals
generated within the region detected by R-CNN [8].

Specifically, let x = {py,p2,...,pn} denote the list of n proposals generated and y be
the ranking output where y;; = +1 whenever the proposal p; is ranked higher than p; and

yij = —1 otherwise. We use the Jaccard index metric with respect to ground truth segmenta-
tions to rank the proposals. The joint input/output feature map, y(x,y), is given as follows:
w(x.y) =) ) vij (6(p) —9(pj)) ij=1.n ®)

i

where ¢ (p;) denotes the feature space representation of proposal p;. Following [5] for ex-
tracting regional, shape and texture features from the proposals, the margin rescaled learning
algorithm [11] is used to maximize the joint score y(x;w):

J(x;w) = argmax (w, y(x,y)) ©)
y

where w represents the learned weights. Further details on training the object proposal ranker
are provided in the supplementary material. The top ranked object proposal from each image
can then be used as a shape constraint for aligning two images. The experiments in Section 4
show a significant improvement in correspondence.

4 Experiments

In this section we investigate the effect of shape on establishing dense correspondences be-
tween pair of images. We consider three types of computer vision tasks: (i) same scene
being imaged under slightly different image acquisition parameters, e.g., optical flow; (ii)
same scene being imaged under large changes in viewing pose, e.g., wide-baseline stereo
correspondence; (iii) scene content being categorically the same but instances of objects and
object configurations not being identical. We refer to this case as semantic image alignment,
which is clearly the most challenging of the three types.

Specifically, we use the MPI Sintel Flow dataset [4] for the task of optical flow, the DTU
Robot Image datasets [ 1] for wide-baseline stereo correspondence, and finally the PASCAL-
Part [6] and the CUB-200-2011 [21] datasets for semantic image alignment. In the task of
semantic image alignment, a subset of most similar image pairs are selected using the pro-
tocol of [17] by maximizing pyramidic histogram intersection of HOG visual words [15].
In total, 196 image pairs from the MPI Sintel Flow dataset, 60 image pairs from the DTU
Robot Image datasets, 10,054 image pairs from the PASCAL-Part dataset [6], and 5,794
image pairs from the CUB-200-2011 dataset [21] are used in our experiments.

Optical flow and multiview stereo datasets provide dense per pixel ground truth cor-
respondences. The PASCAL-Part dataset [6] has fine object part annotations whereas the
CUB-200-2011 dataset [21] provides 15 point-wise part locations. To evaluate quantitative
performance, we measure the flow error magnitude ||V — VS || as well as the flow angu-
lar error Z(VT,Vg—T), on the optical flow and multiview stereo datasets, where ng is the
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ground truth flow vector. The CUB-200-2011 dataset [21] only provides point-wise part lo-
;2'@%’:‘, also known as Jaccard index, is used
on object part intersections to measure the quanti{ative performance on the PASCAL-Part
dataset [6], where A; denotes the set of pixels belonging to region i. We use the same set of
parameters provided by the implementations in [3, 13, 16, 20].

Exploring the role of shape in image correspondence: We begin with the question of
whether providing a pair of corresponding shapes improves dense correspondences, qualita-
tively and quantitatively. We use the segmentations provided by the MPI Sintel Segmenta-
tion Training Data for the task of optical flow, manually annotated object masks for wide-
baseline stereo correspondence and the segmentations of objects provided by the PASCAL-

Part dataset [6] and the CUB-200-2011 dataset [21] for semantic image alignment.

cations. Intersection over union loU (i, j) =

Flow Error Magnitude ‘ Flow Angular Error ‘

data,algorithm Patch Match [3] \ SIFT Flow [16] \ DSP [13] \ SSF [20] | Patch Match [3] \ SIFT Flow [16] \ DSP [13] \ SSF [20]
optical flow, traditional 36.8 +133.0 47+73 6.6+9.2 47+74 36.2 +26.9 134+ 185 224+30.6 13.1+182
optical flow, traditional+shape 37.6 £ 134.0 4.7+17.1 82+95 47+72 36.5+27.3 13.1+18.2 257+323 12.8+17.7
wide-baseline stereo,traditional 220.6 £195.3 95.5+62.9 103.2+£62.5 734+57.0 55.9 £56.8 458 £42.2 68.3+49.1 32.0+393
wide-baseline stereo,traditional+shape | 213.0 +195.9 92.7 + 62.6 84.7+67.2 69.0+57.6 53.7+55.1 40.8 = 41.1 54.6 = 48.0 28.6 +40.5

Table 1: Flow error magnitude and flow angular errors in optical flow and multiview stereo
datasets.

Experimental results for the three types of data are revealing. First, for dataset depicting
slight visual variations, traditional methods are effective and do not benefit from the intro-
duction of a shape correspondence constraint as seen in Table | top two rows. Second, for
datasets depicting large visual variation with the same scene context, the shape correspon-
dence constraints improve the correspondence in the range of 7% as seen in Table 1 bottom
two rows. In both these cases, matching local image signatures with a smoothness constraint
already achieves good performances.

[ parts | Patch Match [3] | Patch Match+shape [| SIFT Flow [16] | SIFT Flow+shape || DSP[13] [ DSP+shape | SSF[20] [ SSF+shape |
back 0.20+£0.13 0.12 = 0.08 0.09 £0.07 0.06 = 0.05 0.08 £0.05 | 0.05 +0.05 || 0.14 +0.09 | 0.07 = 0.06
beak 0.25+0.16 0.17 £ 0.14 0.15+0.11 0.11 £0.12 0.12+0.09 | 0.08 £0.11 | 0.18+£0.12 | 0.12 = 0.12
belly 0.21 £0.13 0.11 + 0.08 0.09 £ 0.06 0.06 £ 0.05 0.08 £0.05 | 0.06 +0.05 || 0.12+0.08 | 0.06 = 0.05
breast 0.23+0.16 0.14 £ 0.12 0.11 £0.08 0.08 £ 0.07 0.09 £0.06 | 0.07 £0.07 || 0.16 +0.10 | 0.08 = 0.09

crown 0.23+0.16 0.14 £ 0.12 0.12 £0.09 0.08 £+ 0.09 0.10£0.07 | 0.05%0.07 || 0.16 +£0.10 | 0.08 = 0.09
forehead 0.23+0.16 0.14 £ 0.12 0.13+£0.10 0.09 £0.10 0.11£0.08 | 0.06 =0.09 || 0.17 +0.11 | 0.10 £0.11
lefteye 0.20+0.17 0.11 £ 0.12 0.12 +£0.09 0.08 £ 0.09 0.10£0.08 | 0.06 =0.08 || 0.17 +£0.11 | 0.09 = 0.10
leftleg 0.23+0.14 0.15 £ 0.10 0.10 £0.07 0.07 £ 0.06 0.09+£0.06 | 0.07 £0.06 || 0.12+0.08 | 0.07 = 0.06
leftwing 0.19+0.13 0.11 = 0.08 0.11 £0.08 0.08 £ 0.06 0.10£0.06 | 0.08+0.06 || 0.14+0.09 | 0.09 = 0.06
nape 0.22+0.14 0.12 = 0.09 0.10 £ 0.07 0.07 £ 0.06 0.09 +£0.06 | 0.06 =0.06 || 0.15+0.09 | 0.07 £0.07
righteye 0.20+0.17 0.11 £ 0.12 0.12 £ 0.09 0.08 £ 0.09 0.09 +£0.07 | 0.05+0.08 | 0.15+0.10 | 0.08 = 0.09
rightleg 0.23+0.14 0.15 £ 0.10 0.10 £ 0.07 0.07 = 0.06 0.09 £0.06 | 0.07 £0.06 || 0.13+0.08 | 0.08 +0.07
rightwing 0.20+0.13 0.11 =+ 0.08 0.11 £0.08 0.09 £ 0.07 0.10+0.07 | 0.08 +0.07 || 0.15+0.09 | 0.10 = 0.08
tail 0.26 £0.16 0.19 = 0.12 0.18 +0.15 0.15+0.15 0.14+0.12 | 0.12+0.13 | 0.19+0.14 | 0.16 = 0.16
throat 0.23+£0.15 0.13 £ 0.11 0.12 £0.09 0.08 + 0.09 0.10£0.07 | 0.07 £0.08 || 0.16 £0.10 | 0.09 = 0.09

Table 2: Normalized part location error in the CUB-200-2011 dataset [21]. The aim here is not to
declare a winner but to emphasize the significant improvements obtained, irrespective of the method
used, when shape constraints are used.

The third type of dataset depicting instance and configuration variation tells a differ-
ent story, however. In the CUB-200-2011 dataset [21], Table 2, and the PASCAL-Part
dataset [6], Fig. 3, there are significant improvements, 35% and 170% respectively. Shape
seems to help bring pixels into proper registration, as evidenced by the examples in Figs. 4
and 5.

Is it really shape of object that is helpful?: The question arises whether the demonstrated
improvement arising from providing the shape correspondence constraint is simply due to
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Figure 3: Jaccard index performance of object classes in the PASCAL-Part dataset [6]. There is
improvement in every case as indicated by the hashed portion of each bar. Per part performances of
object classes are included in supplementary material.

| | Flow Magnitude Error | Flow Angular Error |
Constraints Patch Match [3] | SIFT Flow [16] | DSP [13] [ SSF[20] | Patch Match [3] | SIFT Flow [16] [ DSP[13] | SSF [20]
traditional 36.8+133.1 4773 6692 47+74| 362+269 134+185 224308 13.1%182
random points 36.8 +133.0 47£72 6.6+£92 47+73| 36.2+26.9 133£185  224+308 129179
contour fragment 37.8+133.9 4.6+7.2 85+13.0 45+7.0 36.4+27.2 13.0 £ 18.5 235+31.5 12.6+174
closed curve 37.6+ 134.0 4771 8295 47£72| 365%273 13.1£182  257+323 128177
@
| | Flow Magnitude Error | Flow Angular Error |
Constraints [ Patch Match [3] | SIFT Flow [16] [ DSP[13] [ SSF[20] [ PatchMatch [3] | SIFT Flow [16] [ DSP[13] [ SSF[20]
traditional 220.6 £195.3 955+629  103.2%625 734%570| 559%56.8 458+422  683+49.1 32.0%39.3
random points | 220.1 # 195.1 946640 1032624 685+547 | 558567 455+437  683+49.1 28.0%39.1
contour fragment | 219.5 +195.0 93.6+624  103.4+647 66.6+53.8 | 554+56.5 43.5+£421  750£53.0 283%39.0
closed curve 213.0 + 1959 92.7+£62.6  847+67.2 69.0+57.6 | 537551 40.8+41.1  54.6+48.0 28.6+40.5

()

Table 3: Flow error magnitude and flow angular error using various alignment constraints: in
(a) optical flow and (b) multiview stereo datasets.

providing a set of additional point-pair correspondences or due to the fact that they provide
geometrical constraints. In addition, we ask whether a contour correspondence constraint
provides a significantly better constraint if the contour is closed. These questions can be an-
swered by providing a set of N points which are in three configurations: (i) randomly placed
points, (ii) points arranged as a contour, and (iii) points arranged as a closed contour.

Table 3 compares the results of adding each of these three constraints to the traditional
methods experimented on optical flow and multiview stereo datasets. (We have not experi-
mented with configurations (i), and (ii) in the task of semantic image alignment, main reason
being the unavailability of densely annotated ground truth flow fields. Also, the results
shown in Table 4 and Fig. 5, though being valid for configuration (iii), are not repeated.)
In all the experiments here, N is empirically chosen to be 50. Table 3a, using optical flow
dataset, shows no improvement based on shape as before, and Table 3b, using multiview
stereo dataset, shows modest improvement due to shape. The experiment shows that closed
curves generally perform better than contour fragments which in turn perform better than a
random set of points as a constraint to finding image correspondence.

Object proposals and shape alignment: Since MCG [2] and CPMC [5] use the PASCAL
dataset [7] in tuning hyperparameters of their object proposal pipelines, the CUB-200-2011
dataset [21] is used to perform an unbiased experiment. Correspondences are evaluated for
the accuracy of part transfer compared to ground truth. Table 4 shows the quantitative per-
formances achieved in object part transfer when object shapes are automatically proposed,
whereas Fig. 6 demonstrates the qualitative results obtained for the same image pair shown
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Flgure 4: A qualltatlve result from the CUB-200 2011 dataset [21]. Flrst row shows the target and
source images with ground truth segmentations marked in red along with the target and source image
part locations. Second and third row show the warped source image using the default settings and with
shape constraints respectively. The expectation is that the warped source image reconstructs the target
image with the appearance of the source image. The fourth and fifth row show the matchings of the
target image part locations on the source image using the default settings and with shape constraints
respectively. Ideally, these should be equal to the source image part locations shown in first row fourth
column. See also supplementary material.

in Fig. 4. The average Jaccard index of the segmentations provided by object proposals au-
tomatically 1s 73.8%. Compared to Table 2, which uses ground truth segmentations (hence
having a Jaccard index of 100%), there is a 9.8% drop in performance. (Table 2 shows 35%
improvement over default algorithms compared to 25.2% improvement shown in Table 4.)
Note that due to discarding image pairs used to train our ranker, the default performances of
algorithms shown in Table 4 are slightly different than the ones shown in Table 2.

5 Conclusion

In this paper we have explored the inclusion of shape constraints in improving dense corre-
spondence computations. We have found that shape constraints (i) do not help with images
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Figure 5: A qualitative result from the PASCAL-Part dataset [6]. First row shows the target
and source images with ground truth segmentations marked in red along with the target and source
image part masks. Second and third row show the warped source image using the default settings and
with shape constraints respectively. The expectation is that the warped source image reconstructs the
target image with the appearance of the source image. The fourth and fifth row show the part mask
transfer from the source image to the target image using the default settings and with shape constraints
respectively. Ideally, the part masks transferred from the source image should coincide with the part
masks of the target image. See also supplementary material.

of the same scene acquired under slightly different conditions; (ii) improve the results of
pairs of images of the same scene but under largely different imaging conditions. Finally, we
found the highest impact of shape constraints in (iii) semantic image alignment, i.e., when
the scene content of the two images are only categorically related and when scene compo-
nent configurations vary. Such shape correspondences can be manually specified. However,
we have begun exploring the use of object proposals and have shown very promising results
in this direction.
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[ parts | Patch Match [3] | Patch Match+shape [| SIFT Flow [16] | SIFT Flow-+shape [ DSP [13] | DSP+shape [ SSF[20] | SSF+shape

back 0.20£0.13 0.13 + 0.09 0.09 £ 0.07 0.07 £ 0.06 0.08£0.05 | 0.06 £0.06 || 0.14 +0.09 | 0.08 +0.07
beak 0.25+£0.16 0.21 £ 0.15 0.14 +£0.11 0.12 £0.11 0.12+0.10 | 0.09+£0.11 || 0.18 +0.11 | 0.13+0.11
belly 021 £0.13 0.13 +0.10 0.09 £ 0.06 0.07 £ 0.05 0.08£0.05 | 0.06 +£0.05 || 0.12+0.08 | 0.08 +0.06
breast 021 +£0.14 0.12 +0.10 0.11+0.08 0.09 +0.07 0.09+0.06 | 0.07 £0.07 | 0.14+0.09 | 0.09 +0.08
crown 023 +£0.16 0.17 £ 0.14 0.12+0.09 0.09 = 0.09 0.10+0.07 | 0.06 +£0.08 || 0.16£0.10 | 0.10 + 0.09
forehead 0.23£0.16 0.17 £ 0.14 0.13+0.10 0.10 £ 0.10 0.11+0.08 | 0.07+0.09 || 0.17+0.11 | 0.11 +0.10
lefteye 0.19+£0.17 0.13 +£0.14 0.12+0.09 0.09 + 0.09 0.10+0.08 | 0.06 +£0.07 || 0.17£0.11 | 0.10 = 0.10
leftleg 0.23+£0.14 0.21 £0.13 0.10 £ 0.07 0.09 £ 0.06 0.09£0.06 | 0.08 £0.06 || 0.12+0.08 | 0.09 +0.07
leftwing 0.19+£0.13 0.13 £ 0.10 0.11 £0.07 0.09 £ 0.07 0.10£0.06 | 0.09 +£0.07 || 0.14+0.09 | 0.10 +0.07
nape 0.21 £0.14 0.13 £ 0.11 0.10 £ 0.07 0.07 £ 0.06 0.09 £0.06 | 0.06 +£0.06 || 0.15+0.09 | 0.09 +0.07
righteye 0.20£0.17 0.14 + 0.14 0.11£0.09 0.09 +0.08 0.09£0.07 | 0.06 +£0.09 || 0.15+0.10 | 0.09 +0.08
rightleg 0.23£0.14 0.21 +0.13 0.10 £ 0.06 0.09 £ 0.06 0.09£0.06 | 0.08 +£0.06 || 0.13+0.08 | 0.10 +0.07
rightwing 0.20£0.13 0.13 + 0.09 0.11£0.08 0.10 £ 0.07 0.10£0.07 | 0.09 £0.08 | 0.15+0.09 | 0.10 +0.08
tail 0.26 £0.16 0.24 £ 0.15 0.18 £0.15 0.17 £ 0.15 0.14+£0.12 | 0.13£0.13 || 0.19+0.14 | 0.17 £0.15
throat 0.24 £0.15 0.15 +0.12 0.12+0.09 0.09 +0.09 0.10+0.08 | 0.07 £0.08 || 0.16£0.10 | 0.10 = 0.09

Table 4: Normalized part location error in the CUB-200-2011 dataset [21] using R-CNN [8] and
object proposals. The aim here is not to declare a winner but to emphasize the significant improve-
ments obtained, irrespective of the method used, when shape constraints are used.

Target R-CNN [8] Detection Source R-CNN [8] Detection Target Proposal Source Proposal
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Flgure 6 The qualltatlve result usmg the same lmage pair as shown in Flg 4 from the CUB 200-
2011 dataset [21] using R-CNN [8] and object proposals. First row shows the R-CNN [8] bounding
box detection results along with the top ranked object proposals for source and target images. We do
not repeat the results of the four methods in default settings, as shown in Fig. 4, and instead show the
results of the four methods using shape constraints provided by object proposals and the results of part
matchings in the second and third rows respectively.
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