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Abstract. While the analysis of foreground silhouettes has become a
key component of modern approach to multi-view people detection, it
remains subject to errors when dealing with a single viewpoint. Besides,
several works have demonstrated the benefit of exploiting classifiers to
detect objects or people in images, based on local texture statistics. In
this paper, we train a classifier to differentiate false and true positives
among the detections computed based on a foreground mask analysis.
This is done in a sport analysis context where people deformations are
important, which makes it important to adapt the classifier to the case at
hand, so as to take the teamsport color and the background appearance
into account. To circumvent the manual annotation burden incurred by
the repetition of the training for each event, we propose to train the clas-
sifier based on the foreground detector decisions. Hence, since the detec-
tor is not perfect, we face a training set whose labels might be corrupted.
We investigate a set of classifier design strategies, and demonstrate the
effectiveness of the approach to reliably detect sport players with a single
view.

Keywords: detection, random ferns, corrupted label.

1 Introduction

Detecting people in images is an important question for many computer vi-
sion applications including surveillance, automotive safety, or sportmen behavior
monitoring. It has motivated a long history of research efforts [8], which have
recently converged into two main trends.

On the one hand, background subtraction approaches have gained in popu-
larity since they have been considered in a multi-view framework. In each view,
those approaches build on a background model to compute a mask that is sup-
posed to detect the moving foreground objects in the view. The foreground
silhouettes computed in each view of a calibrated multi-camera set-up are then
merged to mitigate the problems caused by occlusions and illumination changes
when inferring people location from a single view. Several strategies have been
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considered to fuse the masks from multiple views [13,10,1,6]. They generally rely
on the definition of a ground occupancy probability map, which exploits the ver-
ticality of people silhouettes to estimate the likelihood that a particular ground
plane position is occupied or not by someone. All of these approaches build on
the multiplicity and diversity of viewpoints, and their performances significantly
degrade when a single viewpoint is available.

On the other hand, efforts have been carried out to detect people or objects of
interest based on their visual appearance. Modern approaches make an extensive
use of training samples, to learn how the object is defined in terms of topolog-
ically organized components [9,2] and/or in terms of texture statistics [15,4].
The pioneering work of Viola and Jones [19] illustrates the success of those ap-
proaches to detect objects in images. It relies on boosting strategies to select
and combine a large number of weak binary tests to decide whether the content
of a (sub-)image corresponds to the object-of-interest or not. Since the tests are
defined in terms of the average luminance observed on small patches defined
by their size and location in the image, their statistics intrinsically capture the
spatial topological organization of the image textures. Several recent works have
been inspired by the same intuition to detect people. Representative examples
are the work in [7] and in [20], which analyze the content of an image in terms
of a multiplicity of pixel features -like color, gradient, or motion. Those meth-
ods appear to be efficient in detecting people, as long as a sufficiently large and
representative database is available to train the classifier. The collection of those
training samples is however performed manually in most previous works, which
prevents to adapt the detector to the appearance specificities encountered in
the particular case at hand. Such adaptation capability is especially relevant in
a teamsport analysis context, since the background and all the players of each
team are characterized by a specific shirt.

Our paper takes advantage of the two trends presented above. It aims at
improving the foreground silhouette detector (referred as foreground detector
in the following), by using an appearance-based classifier to differentiate false
and true positives among the foreground silhouette detections. The main idea
of our paper, and its main contribution from a system design point-of-view,
consists in training the classifier based on the probably correct decisions taken by
the foreground detector. Because it exploits color and gradient visual features,
the appearance-based classifier offers a complementary information compared
to the one provided by the foreground detector, thereby making the overall
detection more reliable. This idea is in-line with co-training approaches [3]. The
similarities and differences between our proposal and co-training approaches will
be discussed in Section 3. More importantly, because our approach defines the
training samples of the classifier based on the foreground detector decisions,
no manual annotation is required to generate the training set, which makes it
possible to retrain and adapt the classifier to the case at hand.

In addition to the original integration of two families of people detection
algorithms, our paper also brings significant contributions related to the design
of the classifier itself. Indeed, primarily, our paper introduces an original people
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detection method that relies on an ensemble of random sets of binary tests
to characterize the texture describing the visual appearance of the target. The
binary tests consist of comparison of pixel values within a block. Specifically,
we extend the approaches in [15] and [17] to the description of large image
patterns (see Section 4.2). Our experimental results demonstrate that the use
of simple binary tests on raw pixel color or gradients of image blocks is more
effective in characterizing sport player patterns than the integral image features
recommended in [7] for pedestrians.

As a second contribution related to the design of appearance-based classifiers,
our paper shows that, in the particular case of large deformations of the objects
of interest as encountered in a sport context, ensembles of random classifiers
outperform the boosted classification methods, traditionally adopted for pedes-
trian detection [7]. Ensembles of random classifiers have gained popularity in
recent years, mainly because they reduce the risk of overfitting and offer good
generalization properties in case of training samples scarcity [12]. Our work re-
veals that those random classifiers are also more robust to labels corruption than
AdaBoost solutions.

The rest of the paper is organized as follows. Section 2 presents the overview
of our system. Section 3 discusses the similarities and differences between the
co-training framework and our approach. Section 4 then defines our proposed
classifier. It is supposed to differentiate human player patterns from arbitrary
background patterns, and consists of an ensemble of random ferns, each fern
characterizing a block of the image in terms of the stochastic distribution of its
visual features. Section 5 validates our approach.

2 System Overview: Training with Corrupted Labels

The proposed detection scheme is depicted in Figure 1.

image samples
Probably negative

image samples
Probably positive

Appearance−based classification

Input video

Probably positive
image samples

Appearance−validated
detections

Training of classifier

Foreground−based detection

Fig. 1. Solid lines depict the proposed people detection scheme. The foreground-based
detections are validated or rejected based on their appearance. Dashed lines depict the
training phase. The appearance-based classifier is trained with image samples that are
labelled with a good rate of success by the foreground detector.
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People/player image samples are continuously detected with a high detection
rate and a reasonable false alarms rate, based on the foreground mask approach
described in [6]. The resulting probably positive samples are then processed
by a classifier, which further investigates the visual features of each foreground
detected object to decide whether it corresponds to a human/player or not. Op-
tionally, the foreground detected samples can feed the training of the classifier.
Specifically, two classes of training samples are defined based on the ground oc-
cupancy map computed in [6]. The first class of training samples corresponds to
the probably positive samples. Those samples are defined by cropping a rectan-
gular sub-image in the camera view, around the backprojection of a probably
occupied ground position. The training samples of the second class correspond to
probably negative samples, which are randomly cropped around backprojected
ground positions that are considered to be unoccupied by the detector. Examples
of image samples from both classes are presented in Figure 2.

(b)(a)

Fig. 2. Examples of samples labelled as probably positive (a) or probably negative (b)
by the foreground detector

We observe a significant variability among the samples of each class, which
makes the learning of a classifier challenging, and motivates the careful investiga-
tion carried out in Section 5. Regarding the people/no-people decision expected
from the classifier, those samples are subject to label corruption. This is because
those labels are defined based on the error-prone decisions of the foreground de-
tector. As a consequence, the appearance-based classifier should be designed so
that its learning is robust to label corruption. In the next section, we motivate
the need of online training and position our work with regard to the co-training
framework, which shares similarities with our approach, whilst being different.

3 Specificities of Our Applicative Context vs. Related
Work

To motivate both the need for online training, and the development of an original
solution to this problem, it is worth presenting the specificities of our application
context.

In short, we are interested in the detection of teamsport players to control
the autonomous production of images to render a sport game action [5]. In other
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words, the information about players positions is used to select the view point
to adopt to render the action, typically by cropping within a fixed view. Hence,
we are not interested in the accurate segmentation of each individual, but we
are eager to determine whether a given foreground activity either results from
(one or several) players, or is caused by some other reason like, for example,
dynamic advertisement panels or spot lightings. As another consequence of our
application context, our system has to deal with severe deformations of the
object-of-interest (players are running, jumping, falling down, connecting to each
others, etc). Hence, to be effective, it can not only rely on the characterization
of the standard appearance of a standing human, like it is done for pedestrian
detection for example, but it has to exploit as much of the a priori information
that is available about the appearance of the object (e.g. players’jerseys have a
known color) and of the scene (sport hall, known background advertisements).
Since this a priori information changes from one game to another, the classifier
has to be trained online, so as to adapt to the game at hand.

Besides motivating the online training, the wide range of deformations en-
countered by our application also prevents the use of most of the solutions that
have been proposed in the past to learn online, without manual labelling of the
training samples. Specifically, in the late nineties, Blum and Mitchell [3] have
introduced the co-training framework to reduce the amount of labelled samples
required to train a classifier. Their purpose was to exploit unlabelled samples to
jointly reinforce two complementary classifiers, i.e. that look at the data from
different points of view, using independent features. In a straightforward im-
plementation of their framework, the two classifiers are initially trained based
on a small set of manually labelled samples, and are then jointly improved by
increasing the training set of one classifier based on the reliable labels assigned
by the other classifier [14]. In more recent works, motion detection has been
considered to initialize the learning process, so that manual labelling is not re-
quired anymore [18,16]. In both kinds of approaches, however, a key issue lies
in the selection of reliably labelled samples. To identify those reliable samples,
earlier works make the explicit or implicit assumption that the appearances of
the objects-of-interest are sufficiently similar to be accurately described by some
fixed discriminative (appearance) model. They then propose to learn such dis-
criminative model from the dominant statistics observed among the positively
labelled samples of each classifier, either in terms of PCA [18] or simply in terms
of motion blobs aspect ratio [16]. In our sport analysis context, however, the
assumption about the existence of a stable appearance model does not hold any-
more. Players are very active, and their silhouettes change a lot depending on the
action at hand (see variability in Fig. 2-(a)). Bottom line, we can not rely on some
simplistic appearance model to select reliable samples among the ones detected
based on motion analysis. For this reason, we have to deal with erroneous labels
during the training. We show in the rest of the paper that ensembles of random
classifiers better support such errors in labelling than AdaBoost solutions.



Training with Corrupted Labels 687

4 Classification of Human Patterns Based on Weak
Binary Tests Combination

Many recent works have demonstrated the advantages of combining (weak) bi-
nary tests to solve image classification problems [15,4,19,7,17]. We follow this
paradigm. Section 4.1 defines the binary tests either in terms of pixel values or
integral images comparisons. Section 4.2 presents two approaches to combine the
binary tests. The first one follows the well-known AdaBoost method [11], as used
in [19,7]. The second one adopts a more recent Semi-Naive Bayesian formulation,
and classifies samples based on the joint probability distributions associated to
random ferns, i.e. to small sets of randomly selected binary tests [17]. In con-
trast to previous usages of ferns, which have focused on the description of small
texture patches around keypoints, our paper proposes to exploit ferns to classify
entire and semantically meaningful image patterns.

4.1 Definition of Binary Tests

In our work, the tests are carried out on so-called image channels, defined in [7]
as the R, G, and B components, the gradient magnitudeGM , and the magnitude
of oriented gradients OGj , 0 ≤ j ≤ 5.

For a given channel, a binary test is then defined to compare either the in-
tensities of two pixel locations, or the integrals of pixel intensities over two
rectangular supports. Comparisons of pixel intensities are performed within a
small block, e.g. limited to 16× 16 pixels, because they aim at describing local
textures through the combination of many local comparisons of pixel intensities.
In contrast, integral supports are defined on the entire image since those integral
values are supposed to capture discriminating behavior of the image signal on
some spatial area. The first kind of test follows the approaches in [15] and [17],
while the second one follows [19] and [7].

In a more formal way, a binary test bi is defined by (i) the test image channel
Ii ∈ {R,G,B,GM, {OGk}0≤k≤5}, (ii) the test type ti ∈ {pixel, integral}, and
(iii) a pair of pixel locations (mi,1,mi,2) (defined in a 16x16 block) or a rectan-
gular support (ri,1, ri,2) (defined over the entire image). Letting wi,1 and wi,2

denote two intermediate values defined as follows:

∀j ∈ {1, 2} , wi,j =

{
Ii(mi,j), if ti = pixel

1
|ri,j |

∑
m∈ri,j

Ii(m), if ti = integral
(1)

where |ri,j | is the number of pixels in the rectangle, we simply write:

bi =

{
1, if wi,1 > wi,2

0, otherwise
. (2)

4.2 Combination of Binary Tests

Two approaches are considered to combine the weak binary classifiers.
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The first one follows the AdaBoost algorithm [11]. It will be used as a baseline
reference since its effectiveness and efficiency in solving object detection problems
in images have already been extensively demonstrated [19,7].

The second combination approach is an original contribution of our paper.
As told above, it is inspired by a number of earlier works dealing with image
texture classification [15] and keypoint identification [17]. It differs from those
previous works by the fact that it is designed to describe the semantically mean-
ingful pattern corresponding to the projection of an object or a human-being.
Therefore, the binary tests are selected over the entire image support, and have
to be defined in terms of their relative position compared to the image support.
This is simply done by normalizing the image sizes, typically to 128× 64 pixels
in our work. To explain the other specificities of our approach compared to [17],
it is worth reminding the principle underlying the classification with ensemble
of random sets of binary tests, also named random ferns (RF) classification.

LetD denote the random variable that represents the class of an image sample.
In our problem, D = 1 if the sample corresponds to a player, and D = 0
otherwise. Given a set of N binary tests bi, i = 1, ..., N , the sample class MAP
estimate d̂ is defined by:

d̂ = argmax
d∈{0,1}

P (D = d|b1, ..., bN ). (3)

Bayes’ formula yields:

d̂ = argmax
d∈{0,1}

P (b1, ..., bN |D = d), (4)

if we admit a uniform prior P (D).
Learning and maintaining the joint probability in Equation (4) is not feasible

for large N since it would require to compute and store 2N entries for each class.
A naive approximation would assume independence between binary tests, which
would reduce the number of entries per class to N . However, such representation
completely ignores the correlation between the tests. The semi-naive bayesian
approach proposed in [17] accounts for dependencies between tests while keep-
ing the problem tractable, by grouping the N binary tests into M sets of size
S = N/M . These groups are named ferns, and the joint conditional probability
is approximated by:

P (b1, ..., bN |D = d) =

M∏
k=1

P (Fk|D = d), (5)

where Fk denotes the kth fern.
The training phase estimates the class conditional probability distribution of

each fern independently, and is detailed in [17]. Compared to AdaBoost, random
ferns have the advantage to support incremental training. This is especially inter-
esting in our teamsport analysis context, since it allows to initialize the processwith
default ferns distributions (e.g. averaged on several games), and to progressively
update the distributions along the game, as new samples are collected.
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Now that the random ferns classification principles have been reminded, we
explain how our approach differs from earlier works in terms of tests assignment
to ferns. This subtle change is required to characterize large image patterns,
and not just small texture patches as in [17]. In [17], to split the N tests into
ferns of S tests, they use a random permutation function with range 1...N . This
is motivated by the fact that all tests have a priori the same chance to be
(in)dependent. In our case, this assumption reasonably holds for integral image
tests, since their supports cover large fractions of the image, which gives all pairs
of tests a similar chance to be (in)dependent. In contrast, the assumption does
not hold anymore for the tests dealing with pixel intensities. Those tests are
local by definition, since they compare the intensities of two locations that are
close to each other. Hence, two tests dealing with the same image area are more
likely to depend on each other than two tests dealing with far apart pixels. Since
dependencies are only handled within a fern, it becomes relevant to assign to
each fern a set of tests that correspond to the same spatial area. In final, when
using pixels intensities comparisons, our proposed approach can be summarized
as follows. The image support is split into a grid of non-overlapping blocks of
16× 16 pixels, and all tests of a given fern are defined based on a pair of pixels
that are selected within the same block.

5 Experimental Validation

This section considers a typical real life basket-ball player detection scenario.
The training sets are defined automatically, as explained in Section 2. The set of
probably positive samples detected by the foreground detector [6] is referred to
as the detector set in the following, while the set of probably negative samples is
named random set. In addition, a reference ground truth label has been assigned
manually to each detector sample, so as to split the detector set into a positive
and a negative set. The positive set includes the valid detections, while the
negative set contains the false detections, resulting from a foreground detector
error.

In our experiments, we train the classifiers based on detector and random
training sets, and measure how well those classifiers discriminate between posi-
tive and negative test sets.

The detector sets considered in our experiments are derived from a game that
happened in the Spiroudome sporthall (http://www.spiroudome.com), on a pe-
riod of time during which 2723 positive samples have been manually annotated.
Several detector (and random) sets have been defined on the same period of
time. Each detector set is composed of 1000 samples randomly picked among
the foreground detected samples, but is affected by a different rate n of false
detections, ranging from n = 2% to n = 10%, as a function of the foreground
detector operating point. In addition, an Oracle defines uncorrupted detector
sets (n = 0%), based on the manual groundtruth. Five pairs of detector and
random sets have been picked up randomly at each corruption rate, so as to re-
peat the experiments and compute average and standard deviation performance
metrics.
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The test set is defined by 1000 manually labelled samples (900 positive sam-
ples, and 100 negative ones), extracted in a different period of time of the same
Spiroudome game.

For all those sets, each image sample is characterized by 10 image channels,
and the classifiers parameters are set as follows. There are 5 tests per fern, and
200 ferns per 16x16 image block. For each fern, the common channel of the 5 tests
is randomly selected among the 10 image channels. Hence, there are 32000 tests
for a normalized image of size 128x64. The same number of tests is considered
for AdaBoost classifiers.

In the first experiment, we compare different kinds of binary tests. There-
fore, we train the random ferns classifier on uncorrupted labels, and consider
three kinds of binary tests: pixel comparisons within a block, pixel comparisons
within the whole image and integral image comparisons within the whole image.
Figure 3-(a) plots the obtained ROC curves, that is the detection rate on the
positive set versus the detection rate on the negative set (which corresponds to
the false alarm rate on the detector set). The number of binary tests are the
same in the three cases. We observe that significantly better performances are
obtained with tests comparing two pixels in a block. Tests comparing integral
images or pixels on the whole image are not able to discriminate player activity
patterns from background activity. In the following, we only consider comparison
of pixels within a block.
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Fig. 3. (a) Receiver Operating Characteristic (ROC) curves resulting from the random
ferns (RF) classifier trained on uncorrupted labelled samples (0%) for three kinds of
binary test: “pixel block”, i.e. pixel comparison within a block, “pixel image”, i.e.
pixel comparison within the whole image and “integral image”, i.e. integral comparison
within the whole image. Binary test based on the comparison of pixels within a block
outperforms the two other kinds of binary test ; (b) ROC curves resulting from training
sets with uncorrupted labels (0%) and corrupted labels (rate of 2, 5 and 10%), for both
kind of classifiers: random ferns (RF) and AdaBoost (AB). Random ferns classifier
outperforms AdaBoost ones and is less sensitive to uncorrupted labels.
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In the second experiment, we analyze the impact of the label corruption rate
when training AdaBoost and random ferns classifiers. Figure 3-(b) plots the ROC
curves for both kinds of classifiers, and for different corruption rates. It reveals
that our proposed random ferns approach outperforms the AdaBoost classifier,
and is more robust to label corruption than AdaBoost (see the decrease of “area
under curve” in Table 1). Additional experiments that are not reported here have
shown that increasing the number of weak classifiers in the case of AdaBoost
has no significant impact on the obtained performances.

Table 1. Area under curve measured in Fig. 3-(b) (mean ± standard deviation)

Uncorrupted Corrupted labels
labels (0%) 2% 5% 10%

Random Ferns 0.949 ± 0.006 0.947 ± 0.009 0.934 ± 0.007 0.915 ± 0.006

AdaBoost 0.848 ± 0.042 0.822 ± 0.035 0.757 ± 0.047 0.730 ± 0.040

In the third experiment, we investigate how online training improves perfor-
mances compared to offline training. We train the random ferns classifier on dif-
ferent training sets. The first training set is based on the Spiroudome game with
different rates of corrupted labels. The second training set is based on the Apidis
dataset (http://www.apidis.org/Dataset) with uncorrupted labels. Finally, the
last training set is composed by a mixture of samples from the Spiroudome and
Apidis datasets: 500 positive samples from the Apidis dataset, 500 probably
positive samples from the Spiroudome dataset (with 10% of corrupted labels)
and 1000 probably negative samples from the Spiroudome dataset. The obtained
ROC curves are plotted in Figure 4-(a). The best curves are obtained from the
Spiroudome training set with small corruption rates (≤ 5%), or from a mixed
training set when the corruption rate increases. We also observe that keeping
the false alarm rate below 5% (which is reasonable to avoid video production
inconsistencies) results in a selection rate lower than 40% for offline training,
but higher than 60% with mixed online training.

As a last experiment, we have measured the impact of our proposed system on
the operating points of a single-view player detector integrating the foreground
detector and the random ferns classifier. For this purpose, we have defined man-
ually a detection ground truth over 280 regularly spaced frames, in an interval
of 4min40s of a Spiroudome basketball game. This ground truth information
consists of the bounding boxes of the players and referees in the frame view
coordinate system. We have then compared this ground truth to the detections
computed by the foreground detector in [6], and to the subsets of those detec-
tions that are considered to be positive by the classifier trained with the 10%
corrupted training set in the second experiment (see Fig. 3-(b)). For this com-
parison, we consider that two objects cannot be matched if the overlapping of
the detected bounding boxes on the frame is smaller than 50%. Figure 4-(b)
presents, in solid line, the ROC curve of [6], i.e. using the foreground detector
only. The dotted, dashed-dotted and dashed lines correspond to the ROC curves
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Fig. 4. (a) ROC curves for three kinds of training sets: Spiroudome set with different
rates of label corruption, Apidis set and mixture of them. We conclude that online
training helps even in case of corrupted labels ; (b) Improvement of ROC curve resulting
from our proposed random ferns (RF) classifier, trained on corrupted labels: The solid
green line depicts the initial foreground detector ROC. Dotted, dot-dashed, and dashed
lines plot the ROC curves obtained after classification of the samples detected by the
foreground detector, respectively working with 70%, 50% or 20% of missed detections
(MD).

obtained when using the random ferns classifier to sort the foreground detections
into false and true positives. Each of these 3 curves is derived from a particu-
lar foreground detector operating point, respectively corresponding to 20%, 50%
and 70% of missed detections. We conclude from Figure 4-(b) that the classifier
significantly improves the operating trades-off compared to the ones obtained
based on foreground detection only, which definitely demonstrates the relevance
of the scheme proposed in Fig. 1.

6 Conclusion

As a first and primary contribution, the paper has proposed an original frame-
work to reinforce a (visual object) detector. The framework assumes that a
reasonably correct detector is available, but that it fails to use some available
(visual) features that are actually discriminating with respect to the detection
task. Based on those assumptions, our framework proposes to train a classifier
to discriminate between detected samples, which are probably positive regarding
the detection goal, and randomly selected samples, which are probably negative.
Our experimental results demonstrate that the resulting classifier offers good
generalization properties and captures the essence of the knowledge needed to
differentiate false and true positives among the samples detected by the initial
foreground detector, thereby shifting the receiver operating characteristics of the
reinforced detector towards smaller false alarm rates for a given detection rate.
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As a second contribution, our paper has shown that an ensemble of random
classifiers achieves better performances than conventional boosted solutions for
large intra class variability, and when the labels of the training samples are cor-
rupted. Regarding the definition of the binary tests that are combined through
boosting or random strategies, it appears that the comparisons of neighbour-
ing pixel values offer better performances than comparison of pixels or integral
images on the whole image.

References

1. Alahi, A., Jacques, L., Boursier, Y., Vandergheynst, P.: Sparsity driven people
localization with a heterogeneous network of cameras. Jour. of MIV 41(1-2), 39–58
(2011)

2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees.
Neural Computation 9(12), 1545–1588 (1997)

3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proc. of COLT, pp. 92–100 (1998)

4. Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and
ferns. In: Proc. of ICCV (2007)

5. Chen, F., Delannay, D., De Vleeschouwer, C.: An autonomous framework to pro-
duce and distribute personalized team-sport video summaries: a basket-ball case
study. IEEE Trans. on Multimedia 13(6), 1381–1394 (2011)

6. Delannay, D., Danhier, N., De Vleeschouwer, C.: Detection and recognition of
sports (wo)men from multiple views. In: Proc. of ACM/IEEE ICDSC (2009)

7. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proc. of
BMVC (2009)

8. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark.
In: Proc. of IEEE CVPR (2009)

9. Felzenszwalb, P., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. on PAMI 32(9),
1627–1645 (2010)

10. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with
a probabilistic occupancy map. IEEE Trans. on PAMI 30(2), 267–282 (2008)

11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Jour. of CSS 55(1), 119–139 (1997)

12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely Randomized Trees. Machine Learn-
ing 36(1), 3–42 (2006)

13. Khan, S.M., Shah, M.: A multiview approach to tracking people in crowded scenes
using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A.
(eds.) ECCV 2006. LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006)

14. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors
using co-training. In: ICCV, pp. 626–633 (2003)

15. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust
image classification. In: Proc. of IEEE CVPR, pp. 34–40 (2005)

16. Nair, V., Clark, J.J.: An unsupervised, online learning framework for moving object
detection. In: Proc. of IEEE CVPR, vol. 2, pp. 317–324 (2004)



694 P. Parisot, B. Sevilmiş, and C. De Vleeschouwer
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